Nothing
#' Find the power of various gof tests.
#' @param pnull function to find cdf under null hypothesis
#' @param vals =NA values of discrete random variable, or NA
#' @param rnull function to generate data under null hypothesis
#' @param ralt function to generate data under alternative hypothesis
#' @param param_alt vector of parameter values for distribution under alternative hypothesis
#' @param w (Optional) function to calculate weights, returns -99 if no weights
#' @param phat =function(x) -99 function to estimate parameters from the data, or -99
#' @param TS user supplied function to find test statistics
#' @param TSextra list provided to TS (optional)
#' @param alpha =0.05, the level of the hypothesis test
#' @param Range =c(-Inf, Inf) limits of possible observations, if any
#' @param B =1000 number of simulation runs
#' @param nbins =c(50,10), number of bins for chi square tests.
#' @param rate =0 rate of Poisson if sample size is random, 0 if sample size is fixed
#' @param maxProcessor maximum of number of processors to use, 1 if no parallel processing is needed or number of cores-1 if missing
#' @param minexpcount =5 minimal expected bin count required
#' @param ChiUsePhat = TRUE, if TRUE param is estimated parameter, otherwise minimum chi square method is used.
#' @return A numeric matrix of power values.
#' @export
#' @examples
#' # Power of tests when null hypothesis specifies the standard normal distribution but
#' # true data comes from a normal distribution with mean different from 0.
#' pnull = function(x) pnorm(x)
#' rnull = function() rnorm(50)
#' ralt = function(mu) rnorm(50, mu)
#' TSextra = list(qnull=function(x) qnorm(x))
#' gof_power(pnull, NA, rnull, ralt, c(0.25, 0.5), TSextra=TSextra, B=200)
#' # Power of tests when null hypothesis specifies normal distribution and
#' # mean and standard deviation are estimated from the data.
#' # Example is not run because it takes several minutes.
#' # true data comes from a normal distribution with mean different from 0.
#' pnull = function(x, p=c(0, 1)) pnorm(x, p[1], ifelse(p[2]>0.001, p[2], 0.001))
#' rnull = function(p=c(0, 1)) rnorm(50, p[1], ifelse(p[2]>0.001, p[2], 0.001))
#' phat = function(x) c(mean(x), sd(x))
#' TSextra = list(qnull = function(x, p=c(0, 1)) qnorm(x, p[1],
#' ifelse(p[2]>0.001, p[2], 0.001)))
#' gof_power(pnull, NA, rnull, ralt, c(0, 1), phat=phat, TSextra=TSextra, B=200)
#' # Power of tests when null hypothesis specifies Poisson rv with rate 100 and
#' # true rate is 100.5
#' vals = 0:250
#' pnull = function() ppois(0:250, 100)
#' rnull =function () table(c(0:250, rpois(1000, 100)))-1
#' ralt =function (p) table(c(0:250, rpois(1000, p)))-1
#' gof_power(pnull, vals, rnull, ralt, param_alt=100.5, B=200)
#' # Power of tests when null hypothesis specifies a Binomial n=10 distribution
#' # with the success probability estimated
#' vals = 0:10
#' pnull=function(p) pbinom(0:10, 10, ifelse(0<p&p<1, p, 0.001))
#' rnull=function(p) table(c(0:10, rbinom(1000, 10, ifelse(0<p&p<1, p, 0.001))))-1
#' ralt=function(p) table(c(0:10, rbinom(1000, 10, p)))-1
#' phat=function(x) mean(rep(0:10,x))/10
#' gof_power(pnull, vals, rnull, ralt, c(0.5, 0.6), phat=phat, B=200)
#'
gof_power=function(pnull, vals=NA, rnull, ralt, param_alt,
w=function(x) -99, phat=function(x) -99, TS, TSextra,
alpha=0.05, Range =c(-Inf, Inf), B=1000,nbins=c(50,10),
rate=0, maxProcessor, minexpcount=5.0, ChiUsePhat=TRUE) {
dta = ralt(param_alt[1]) # get an example data set
x = dta
Continuous=ifelse(any(is.na(vals)), TRUE, FALSE)
if(Continuous) {
dta=list(x=x)
check.functions(pnull, rnull, phat, x=x)
}
else {
dta=list(x=x, vals=vals)
check.functions(pnull, rnull, phat, vals, x)
}
if(missing(TSextra)) TSextra=list(pnull=pnull, phat=phat,
w=w, Continuous=Continuous)
else TSextra = c(TSextra, pnull=pnull, phat=phat,
w=w, Continuous=Continuous)
Noqnull=FALSE
if(!("qnull" %in% names(TSextra))) {
Noqnull=TRUE
TSextra=c(TSextra, qnull=function(x) -99)
}
WithWeights = TRUE
if(length(formals(w))==1) {
if(w(x[1])==-99) WithWeights = FALSE
}
# adjust number of bins to account for parameter estimation
if(abs(phat(x)[1]+99)>0.001) nbins=nbins+length(phat(x))
if(any(is.na(vals))) check.functions(pnull, rnull, phat, x=x)
else check.functions(pnull, rnull, phat, vals, x)
if(missing(TS)) {
if(Continuous) {
if(!WithWeights) { #data is not weighted
typeTS=1
TS = TS_cont
}
else {
typeTS=2
TS = TSw_cont
}
}
else {
typeTS = 5
TS = TS_disc
}
}
else {
# can't do parallel processing if TS written in C/C++
if(substr(deparse(TS)[2], 1, 5)==".Call") {
message("Parallel Programming is not possible if custom TS is written in C++. Switching to single processor")
maxProcessor=1
}
if(Continuous) {
if(length(formals(TS))>4) {
message("TS for continuous data should have either 3 or 4 arguments")
return(NULL)
}
typeTS=length(formals(TS))
}
else {
if(length(formals(TS))>6) {
message("TS for discrete datashould have either 4 or 5 arguments")
return(NULL)
}
typeTS=length(formals(TS))+1
}
}
TS_data=calcTS(dta, TS, typeTS, TSextra)
if(is.null(names(TS_data))) {
message("result of TS has to be a named vector")
return(NULL)
}
if(missing(maxProcessor))
maxProcessor=parallel::detectCores(logical = FALSE)-1
if(maxProcessor>1) {
tm=timecheck(dta, TS, typeTS, TSextra)
if(tm*length(param_alt)*B<20) {
maxProcessor=1
message("maxProcessor set to 1 for faster computation")
}
else message(paste("Using ",maxProcessor," cores.."))
}
if(maxProcessor==1) {
tmp=gof_power_C(rnull, vals, ralt, param_alt, TS, typeTS, TSextra, B)
Data=tmp$Data
Sim=tmp$Sim
}
else {
cl <- parallel::makeCluster(maxProcessor)
z=parallel::clusterCall(cl, gof_power_C,
rnull, vals, ralt, param_alt, TS, typeTS, TSextra,
B=round(B/maxProcessor))
parallel::stopCluster(cl)
Sim=z[[1]][["Sim"]]
Data=z[[1]][["Data"]]
for(i in 2:maxProcessor) {
Sim=rbind(Sim,z[[i]][["Sim"]])
Data=rbind(Data,z[[i]][["Data"]])
}
}
pwr=matrix(0, length(param_alt), length(TS_data))
colnames(pwr)=names(TS_data)
rownames(pwr)=param_alt
crtval=apply(Data, 2, quantile, prob=1-alpha, na.rm=TRUE)
for(i in seq_along(param_alt)) {
tmpS=Sim[Sim[,1]==param_alt[i], -1, drop=FALSE]
for(j in seq_along(crtval))
pwr[i, j]=sum(tmpS[ ,j]>crtval[j])/nrow(tmpS)
}
# Do chi square tests if built-in TS is used. Don't run chi square if weights are present.
chiout=NULL
if(typeTS==1) { #Run chi square tests
if(is.infinite(Range[1])) Range[1]=-99999
if(is.infinite(Range[2])) Range[2]=99999
chipwr = chi_power_cont(pnull=pnull,
ralt = ralt,
param_alt = param_alt,
qnull = ifelse(Noqnull, NA, TSextra$qnull),
phat = phat,
w = w,
alpha = alpha,
Range = Range,
B= B,
nbins = nbins,
rate = rate,
minexpcount = minexpcount,
ChiUsePhat=ChiUsePhat)
}
if(typeTS==5) { #Run chi square tests
chipwr = chi_power_disc(pnull, ralt, param_alt,
phat, alpha , B,
nbins, rate, minexpcount,
ChiUsePhat)[,1:2, drop=FALSE]
}
if(typeTS %in% c(1,5)) pwr = cbind(pwr, chipwr)
if(is.matrix(pwr) & nrow(pwr)==1) pwr=pwr[1, ]
round(pwr, 3)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.