Nothing
#' HEART risk score function for data frame;
#' HEART = History, ECG, Age, Risk factors, Troponin
#'
#' @description
#' This function allows you to calculate the HEART score row wise
#' in a data frame with the required variables. It would then retrieve a data
#' frame with two extra columns including the calculations and their classifications
#'
#' @param data
#' A data frame with all the variables needed for calculation:
#' typical_symptoms.num, ecg.normal, abn.repolarisation, ecg.st.depression,Age,
#' diabetes, smoker, hypertension, hyperlipidaemia, family.history,
#' atherosclerotic.disease, presentation_hstni, Gender
#' @param classify a logical parameter to indicate classification of Scores "TRUE" or none "FALSE"
#' @param typical_symptoms.num a numeric vector of the number of typical symptoms
#' @param ecg.normal a binary numeric vector, 1 = yes and 0 = no
#' @param abn.repolarisation a binary numeric vector, 1 = yes and 0 = no
#' @param ecg.st.depression a binary numeric vector, 1 = yes and 0 = no
#' @param Age a numeric vector of age values, in years
#' @param diabetes a binary numeric vector, 1 = yes and 0 = no
#' @param smoker a binary numeric vector, 1 = yes and 0 = no
#' @param hypertension a binary numeric vector, 1 = yes and 0 = no
#' @param hyperlipidaemia a binary numeric vector, 1 = yes and 0 = no
#' @param family.history a binary numeric vector, 1 = yes and 0 = no
#' @param atherosclerotic.disease a binary numeric vector, 1 = yes and 0 = no
#' @param presentation_hstni a continuous numeric vector of the troponin levels
#' @param Gender a binary character vector of sex values. Categories should include only 'male' or 'female'
#'
#' @keywords
#' HEART typical_symptoms.num ecg.normal abn.repolarisation ecg.st.depression
#' Age diabetes smoker hypertension hyperlipidaemia family.history
#' atherosclerotic.disease presentation_hstni Gender classify
#'
#' @return
#' a data frame with two extra columns including the HEART score calculations
#' and their classifications
#'
#'
#' @examples
#'
#' # Create a data frame or list with the necessary variables
#' # Set the number of rows
#' num_rows <- 100
#' # Create a larger dataset with 100 rows
#' cohort_xx <- data.frame(
#' typical_symptoms.num = as.numeric(sample(0:6, num_rows, replace = TRUE)),
#' ecg.normal = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
#' abn.repolarisation = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
#' ecg.st.depression = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
#' Age = as.numeric(sample(30:80, num_rows, replace = TRUE)),
#' diabetes = sample(c(1, 0), num_rows, replace = TRUE),
#' smoker = sample(c(1, 0), num_rows, replace = TRUE),
#' hypertension = sample(c(1, 0), num_rows, replace = TRUE),
#' hyperlipidaemia = sample(c(1, 0), num_rows, replace = TRUE),
#' family.history = sample(c(1, 0), num_rows, replace = TRUE),
#' atherosclerotic.disease = sample(c(1, 0), num_rows, replace = TRUE),
#' presentation_hstni = as.numeric(sample(10:100, num_rows, replace = TRUE)),
#' Gender = sample(c("male", "female"), num_rows, replace = TRUE)
#' )
#' # Call the function with the cohort_xx
#' result <- HEART_scores(data = cohort_xx, classify = TRUE)
#' # Print the results
#' summary(result$HEART_score)
#' summary(result$HEART_strat)
#'
#' @importFrom dplyr mutate
#' @importFrom dplyr rename
#' @importFrom dplyr %>%
#' @importFrom dplyr rowwise
#'
#' @export
HEART_scores <- function(data, typical_symptoms.num = typical_symptoms.num,
ecg.normal = ecg.normal,
abn.repolarisation = abn.repolarisation,
ecg.st.depression = ecg.st.depression,
Age = Age,
diabetes = diabetes,
smoker = smoker,
hypertension = hypertension,
hyperlipidaemia = hyperlipidaemia,
family.history = family.history,
atherosclerotic.disease = atherosclerotic.disease,
presentation_hstni = presentation_hstni,
Gender = Gender, classify) {
data <- data %>% rename(typical_symptoms.num = typical_symptoms.num,
ecg.normal = ecg.normal,
abn.repolarisation = abn.repolarisation,
ecg.st.depression = ecg.st.depression,
Age = Age,
diabetes = diabetes,
smoker = smoker,
hypertension = hypertension,
hyperlipidaemia = hyperlipidaemia,
family.history = family.history,
atherosclerotic.disease = atherosclerotic.disease,
presentation_hstni = presentation_hstni,
Gender = Gender)
if (classify == TRUE) {
results <- data %>% rowwise() %>% mutate(
HEART_score = HEART(
typical_symptoms.num,
ecg.normal,
# all 0 = +0
abn.repolarisation,
# = paced 1 = +1
ecg.st.depression,
#ecg.st.depression = 1 = +2
Age,
diabetes,
smoker,
hypertension,
hyperlipidaemia,
family.history,
atherosclerotic.disease,
presentation_hstni,
Gender ,
classify = FALSE
),
HEART_strat = HEART(
typical_symptoms.num,
ecg.normal,
abn.repolarisation,
ecg.st.depression,
Age,
diabetes,
smoker,
hypertension,
hyperlipidaemia,
family.history,
atherosclerotic.disease,
presentation_hstni,
Gender ,
classify = classify
) %>% as.factor() %>% ordered(levels = c(
"Low risk", "Moderate risk", "High risk"
))
)
}
else{
results <- data %>% rowwise() %>% mutate(
HEART_score = HEART(
typical_symptoms.num,
ecg.normal,
abn.repolarisation,
ecg.st.depression,
Age,
diabetes,
smoker,
hypertension,
hyperlipidaemia,
family.history,
atherosclerotic.disease,
presentation_hstni,
Gender ,
classify = classify
)
)
}
return(results)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.