Nothing
#' SCORE2/OP with CKD add-on risk score function for a data frame;
#' SCORE2/OP = Systematic COronary Risk Evaluation /and Older Population
#' CKD = Chronic kidney disease
#' @description
#' This function allows you to calculate the SCORE2 and OP score with CKD add-ons (eGFR, ACR, dipstick) row wise
#' in a data frame with the required variables. It would then retrieve a data
#' frame with two extra columns including the calculations and their classifications
#'
#' @param data
#' A data frame with all the variables needed for calculation:
#' Age, Gender, smoker, systolic.bp, diabetes, total.chol,
#' total.hdl
#'
#' @param Risk.region a character value to set the desired risk region calculations. Categories should include "Low", "Moderate", "High", or "Very high"
#' @param Age a numeric vector of age values, in years
#' @param Gender a binary character vector of Gender values. Categories should include only 'male' or 'female'
#' @param smoker a binary numeric vector, 1 = yes and 0 = no
#' @param systolic.bp a numeric vector of systolic blood pressure continuous values
#' @param total.chol a numeric vector of total cholesterol values, in mmol/L
#' @param total.hdl a numeric vector of total high density lipoprotein total.hdl values, in mmol/L
#' @param classify set TRUE if wish to add a column with the scores' categories
#' @param diabetes a binary numeric vector, 1 = yes and 0 = no
#' @param eGFR a numeric vector of total estimated glomerular rate (eGFR) values, in mL/min/1.73m2
#' @param ACR a numeric vector of total urine albumin to creatine ratio (ACR) values, in mg/g. Default set to NA
#' @param trace a character vector of urine protein dipstick categories. Categories should include 'negative', 'trace', '1+', '2+', '3+', '4+. Default set to NA
#' @param addon set the add-on you wish to calculate. Categories should include only 'ACR' or 'trace'. Default set to 'ACR'
#'
#'
#' @keywords
#' SCORE2/OP Age Gender smoker systolic.bp diabetes total.chol
#' total.hdl classify eGFR ACR trace addon
#'
#' @return
#' A vector with SCORE2/OP score calculations with CKD add-ons
#' and/or a vector of their classifications if indicated
#'
#' @examples
#'
#' # Create a data frame or list with the necessary variables
#' # Set the number of rows
#' num_rows <- 100
#'
#' # Create a larger dataset with 100 rows
#' cohort_xx <- data.frame(
#' typical_symptoms.num = as.numeric(sample(0:6, num_rows, replace = TRUE)),
#' ecg.normal = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
#' abn.repolarisation = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
#' ecg.st.depression = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
#' Age = as.numeric(sample(40:85, num_rows, replace = TRUE)),
#' diabetes = sample(c(1, 0), num_rows, replace = TRUE),
#' smoker = sample(c(1, 0), num_rows, replace = TRUE),
#' hypertension = sample(c(1, 0), num_rows, replace = TRUE),
#' hyperlipidaemia = sample(c(1, 0), num_rows, replace = TRUE),
#' family.history = sample(c(1, 0), num_rows, replace = TRUE),
#' atherosclerotic.disease = sample(c(1, 0), num_rows, replace = TRUE),
#' presentation_hstni = as.numeric(sample(10:100, num_rows, replace = TRUE)),
#' Gender = sample(c("male", "female"), num_rows, replace = TRUE),
#' sweating = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
#' pain.radiation = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
#' pleuritic = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
#' palpation = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
#' ecg.twi = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
#' second_hstni = as.numeric(sample(1:200, num_rows, replace = TRUE)),
#' killip.class = as.numeric(sample(1:4, num_rows, replace = TRUE)),
#' systolic.bp = as.numeric(sample(90:180, num_rows, replace = TRUE)),
#' heart.rate = as.numeric(sample(0:300, num_rows, replace = TRUE)),
#' creat = as.numeric(sample(0:4, num_rows, replace = TRUE)),
#' cardiac.arrest = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
#' previous.pci = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
#' previous.cabg = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
#' aspirin = as.numeric(sample(c(0, 1), num_rows, replace = TRUE)),
#' number.of.episodes.24h = as.numeric(sample(0:20, num_rows, replace = TRUE)),
#' total.chol = as.numeric(round(runif(num_rows, 3.9, 7.2), 1)),
#' total.hdl = as.numeric(round(runif(num_rows, .8, 2.1), 1)),
#' Ethnicity = sample(c("white", "black", "asian", "other"), num_rows, replace = TRUE),
#' eGFR = as.numeric(sample(15:120, num_rows, replace = TRUE)),
#' ACR = as.numeric(sample(5:1500, num_rows, replace = TRUE)),
#' trace = sample(c("trace", "1+", "2+", "3+", "4+"), num_rows, replace = TRUE)
#' )
#'
#' # Call the function with the cohort_xx
#' result <- SCORE2_CKD_scores(data = cohort_xx, Risk.region = "Low", addon = "ACR", classify = TRUE)
#'
#' # Print the results
#' summary(result$SCORE2_score)
#' summary(result$SCORE2_strat)
#'
#' @importFrom dplyr mutate
#' @importFrom dplyr rename
#' @importFrom dplyr %>%
#' @importFrom dplyr rowwise
#'
#' @export
SCORE2_CKD_scores <- function(data, Risk.region, Age = Age, Gender = Gender, smoker = smoker, systolic.bp = systolic.bp, diabetes = diabetes, total.chol = total.chol, total.hdl = total.hdl, eGFR = eGFR, ACR = NA, trace = NA, addon = "ACR", classify) {
data <- data %>% rename(Age = Age, Gender = Gender, smoker = smoker, systolic.bp = systolic.bp, diabetes = diabetes, total.chol = total.chol, total.hdl = total.hdl)
if (classify == TRUE) {
results <- data %>% rowwise() %>% mutate(
SCORE2_CKD_score = SCORE2_CKD(
Risk.region = Risk.region,
Age,
Gender,
smoker,
systolic.bp,
diabetes,
total.chol,
total.hdl,
eGFR,
ACR,
trace,
addon,
classify = FALSE
),
SCORE2_CKD_strat = SCORE2_CKD(
Risk.region = Risk.region,
Age,
Gender,
smoker,
systolic.bp,
diabetes,
total.chol,
total.hdl,
eGFR,
ACR,
trace,
addon,
classify = classify
) %>% as.factor() %>% ordered(
levels = c("Very low risk", "Low risk", "Moderate risk", "High risk")
)
)
}
else{
results <- data %>% rowwise() %>% mutate(
SCORE2_CKD_score = SCORE2_CKD(
Risk.region = Risk.region,
Age,
Gender,
smoker,
systolic.bp,
diabetes,
total.chol,
total.hdl,
eGFR,
ACR,
trace,
addon,
classify = classify
)
)
}
return(results)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.