BiBMA.reg | R Documentation |
RoBMA
is used to estimate a robust Bayesian
meta-regression. The interface allows a complete customization of
the ensemble with different prior (or list of prior) distributions
for each component.
BiBMA.reg(
formula,
data,
test_predictors = TRUE,
study_names = NULL,
study_ids = NULL,
standardize_predictors = TRUE,
priors = NULL,
rescale_priors = 1,
priors_effect = set_default_binomial_priors("effect", rescale = rescale_priors),
priors_heterogeneity = set_default_binomial_priors("heterogeneity", rescale =
rescale_priors),
priors_effect_null = set_default_binomial_priors("effect", null = TRUE),
priors_heterogeneity_null = set_default_binomial_priors("heterogeneity", null = TRUE),
prior_covariates = set_default_binomial_priors("covariates", rescale = rescale_priors),
prior_covariates_null = set_default_binomial_priors("covariates", null = TRUE),
prior_factors = set_default_binomial_priors("factors", rescale = rescale_priors),
prior_factors_null = set_default_binomial_priors("factors", null = TRUE),
priors_baseline = set_default_binomial_priors("baseline"),
priors_baseline_null = set_default_binomial_priors("baseline", null = TRUE),
algorithm = "bridge",
chains = 3,
sample = 5000,
burnin = 2000,
adapt = 500,
thin = 1,
parallel = FALSE,
autofit = TRUE,
autofit_control = set_autofit_control(),
convergence_checks = set_convergence_checks(),
save = "all",
seed = NULL,
silent = TRUE,
...
)
formula |
a formula for the meta-regression model |
data |
a data.frame containing the data for the meta-regression. Note that the
column names have to correspond to the effect sizes ( |
test_predictors |
vector of predictor names to test for the presence
of moderation (i.e., assigned both the null and alternative prior distributions).
Defaults to |
study_names |
an optional argument with the names of the studies |
study_ids |
an optional argument specifying dependency between the
studies (for using a multilevel model). Defaults to |
standardize_predictors |
whether continuous predictors should be standardized prior to
estimating the model. Defaults to |
priors |
named list of prior distributions for each predictor
(with names corresponding to the predictors). It allows users to
specify both the null and alternative hypothesis prior distributions
for each predictor by assigning the corresponding element of the named
list with another named list (with |
rescale_priors |
a re-scaling factor for the prior distributions. The re-scaling
factor allows to adjust the width of all default priors simultaneously. Defaults to |
priors_effect |
list of prior distributions for the effect size ( |
priors_heterogeneity |
list of prior distributions for the heterogeneity |
priors_effect_null |
list of prior distributions for the effect size ( |
priors_heterogeneity_null |
list of prior distributions for the heterogeneity |
prior_covariates |
a prior distributions for the regression parameter
of continuous covariates on the effect size under the alternative hypothesis
(unless set explicitly in |
prior_covariates_null |
a prior distributions for the regression parameter
of continuous covariates on the effect size under the null hypothesis
(unless set explicitly in |
prior_factors |
a prior distributions for the regression parameter
of categorical covariates on the effect size under the alternative hypothesis
(unless set explicitly in |
prior_factors_null |
a prior distributions for the regression parameter
of categorical covariates on the effect size under the null hypothesis
(unless set explicitly in |
priors_baseline |
prior distributions for the alternative hypothesis about
intercepts ( |
priors_baseline_null |
prior distributions for the null hypothesis about
intercepts ( |
algorithm |
a string specifying the algorithm used for the model averaging. Defaults to |
chains |
a number of chains of the MCMC algorithm. |
sample |
a number of sampling iterations of the MCMC algorithm.
Defaults to |
burnin |
a number of burnin iterations of the MCMC algorithm.
Defaults to |
adapt |
a number of adaptation iterations of the MCMC algorithm.
Defaults to |
thin |
a thinning of the chains of the MCMC algorithm. Defaults to
|
parallel |
whether the individual models should be fitted in parallel.
Defaults to |
autofit |
whether the model should be fitted until the convergence
criteria (specified in |
autofit_control |
allows to pass autofit control settings with the
|
convergence_checks |
automatic convergence checks to assess the fitted
models, passed with |
save |
whether all models posterior distributions should be kept
after obtaining a model-averaged result. Defaults to |
seed |
a seed to be set before model fitting, marginal likelihood
computation, and posterior mixing for reproducibility of results. Defaults
to |
silent |
whether all print messages regarding the fitting process
should be suppressed. Defaults to |
... |
additional arguments. |
BiBMA.reg()
function estimates the Bayesian model-averaged binomial meta-regression.
See vignette("/MetaRegression", package = "RoBMA")
vignette describes how to use the similar RoBMA.reg()
function to fit Bayesian meta-regression ensembles.
See \insertCitebartos2023robust;textualRoBMA for more details about the methodology and
BiBMA()
for more details about the function options. By default, the function standardizes
continuous predictors. As such, the output should be interpreted as standardized meta-regression
coefficients.
Generic summary.RoBMA()
, print.RoBMA()
, and plot.RoBMA()
functions are
provided to facilitate manipulation with the ensemble. A visual check of the
individual model diagnostics can be obtained using the diagnostics()
function.
The fitted model can be further updated or modified by update.RoBMA()
function.
Estimated marginal means can be computed by marginal_summary()
function and
visualized by the marginal_plot()
function.
RoBMA.reg
returns an object of class 'RoBMA.reg'.
BiBMA()
summary.RoBMA()
, update.BiBMA()
, check_setup.reg()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.