NoBMA | R Documentation |
NoBMA
is a wrapper around RoBMA()
that can
be used to estimate a publication bias unadjusted Bayesian
model-averaged meta-analysis. The interface allows a complete customization of
the ensemble with different prior (or list of prior) distributions
for each component.
NoBMA(
d = NULL,
r = NULL,
logOR = NULL,
OR = NULL,
z = NULL,
y = NULL,
se = NULL,
v = NULL,
n = NULL,
lCI = NULL,
uCI = NULL,
t = NULL,
study_names = NULL,
study_ids = NULL,
data = NULL,
weight = NULL,
transformation = if (is.null(y)) "fishers_z" else "none",
prior_scale = if (is.null(y)) "cohens_d" else "none",
model_type = NULL,
rescale_priors = 1,
priors_effect = set_default_priors("effect", rescale = rescale_priors),
priors_heterogeneity = set_default_priors("heterogeneity", rescale = rescale_priors),
priors_effect_null = set_default_priors("effect", null = TRUE),
priors_heterogeneity_null = set_default_priors("heterogeneity", null = TRUE),
priors_hierarchical = set_default_priors("hierarchical"),
priors_hierarchical_null = set_default_priors("hierarchical", null = TRUE),
algorithm = "bridge",
chains = 3,
sample = 5000,
burnin = 2000,
adapt = 500,
thin = 1,
parallel = FALSE,
autofit = TRUE,
autofit_control = set_autofit_control(),
convergence_checks = set_convergence_checks(),
save = "all",
seed = NULL,
silent = TRUE,
...
)
d |
a vector of effect sizes measured as Cohen's d |
r |
a vector of effect sizes measured as correlations |
logOR |
a vector of effect sizes measured as log odds ratios |
OR |
a vector of effect sizes measured as odds ratios |
z |
a vector of effect sizes measured as Fisher's z |
y |
a vector of unspecified effect sizes (note that effect size transformations are unavailable with this type of input) |
se |
a vector of standard errors of the effect sizes |
v |
a vector of variances of the effect sizes |
n |
a vector of overall sample sizes |
lCI |
a vector of lower bounds of confidence intervals |
uCI |
a vector of upper bounds of confidence intervals |
t |
a vector of t/z-statistics |
study_names |
an optional argument with the names of the studies |
study_ids |
an optional argument specifying dependency between the
studies (for using a multilevel model). Defaults to |
data |
a data object created by the |
weight |
specifies likelihood weights of the individual estimates. Notes that this is an untested experimental feature. |
transformation |
transformation to be applied to the supplied
effect sizes before fitting the individual models. Defaults to
|
prior_scale |
an effect size scale used to define priors. Defaults to |
model_type |
string specifying the RoBMA ensemble. Defaults to |
rescale_priors |
a re-scaling factor for the prior distributions. The re-scaling
factor allows to adjust the width of all default priors simultaneously. Defaults to |
priors_effect |
list of prior distributions for the effect size ( |
priors_heterogeneity |
list of prior distributions for the heterogeneity |
priors_effect_null |
list of prior distributions for the effect size ( |
priors_heterogeneity_null |
list of prior distributions for the heterogeneity |
priors_hierarchical |
list of prior distributions for the correlation of random effects
( |
priors_hierarchical_null |
list of prior distributions for the correlation of random effects
( |
algorithm |
a string specifying the algorithm used for the model averaging. Defaults to |
chains |
a number of chains of the MCMC algorithm. |
sample |
a number of sampling iterations of the MCMC algorithm.
Defaults to |
burnin |
a number of burnin iterations of the MCMC algorithm.
Defaults to |
adapt |
a number of adaptation iterations of the MCMC algorithm.
Defaults to |
thin |
a thinning of the chains of the MCMC algorithm. Defaults to
|
parallel |
whether the individual models should be fitted in parallel.
Defaults to |
autofit |
whether the model should be fitted until the convergence
criteria (specified in |
autofit_control |
allows to pass autofit control settings with the
|
convergence_checks |
automatic convergence checks to assess the fitted
models, passed with |
save |
whether all models posterior distributions should be kept
after obtaining a model-averaged result. Defaults to |
seed |
a seed to be set before model fitting, marginal likelihood
computation, and posterior mixing for reproducibility of results. Defaults
to |
silent |
whether all print messages regarding the fitting process
should be suppressed. Defaults to |
... |
additional arguments. |
See RoBMA()
for more details.
Note that these default prior distributions are relatively wide and more informed prior distributions for testing for the presence of moderation should be considered.
NoBMA
returns an object of class 'RoBMA'.
RoBMA()
, summary.RoBMA()
, update.RoBMA()
, check_setup()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.