Nothing
Code
prior
Output
$mu_alpha_0
[1] 0
$Sigma_alpha_0
[,1]
[1,] 10
$delta
[1] 1
$mu_b_0
[1] 0 0
$Sigma_b_0
[,1] [,2]
[1,] 10 0
[2,] 0 10
$n_Omega_0
[1] 4
$V_Omega_0
[,1] [,2]
[1,] 1 0
[2,] 0 1
$n_Sigma_0
[1] 4
$V_Sigma_0
[,1] [,2]
[1,] 1 0
[2,] 0 1
$mu_d_0
[1] NA
$Sigma_d_0
[1] NA
attr(,"class")
[1] "RprobitB_prior" "list"
Code
RprobitB_latent_classes(list(C = 2))
Output
Latent classes
C = 2
Code
(out <- RprobitB_latent_classes(list(wb_update = TRUE, dp_update = TRUE)))
Output
Latent classes
Dirichlet process update: TRUE
Weight-based update: TRUE
Maximum classes: 10
Updating buffer: 50
Minimum class weight: 0.01
Maximum class weight: 0.7
Mimumum class distance: 0.1
Code
str(out)
Output
List of 10
$ wb_update : logi TRUE
$ dp_update : logi TRUE
$ C : num 1
$ Cmax : num 10
$ buffer : num 50
$ epsmin : num 0.01
$ epsmax : num 0.7
$ deltamin : num 0.1
$ deltashift : num 0.5
$ class_update: logi TRUE
- attr(*, "class")= chr "RprobitB_latent_classes"
Code
RprobitB_normalization(level = "B", scale = "price := -1", form = form, re = re,
alternatives = alternatives, base = "B")
Output
Level: Utility differences with respect to alternative 'B'.
Scale: Coefficient of effect 'price' (alpha_1) fixed to -1.
Code
print(model)
Output
Probit model 'choice ~ a | b | c'.
Code
summary(model)
Output
Probit model
Formula: choice ~ a | b | c
R: 2000, B: 1000, Q: 1
Level: Utility differences with respect to alternative 'B'.
Scale: Coefficient of the 1. error term variance fixed to 1.
Gibbs sample statistics
true mean sd R^
alpha
1 -1.09 -1.11 0.06 1.00
2 1.52 1.51 0.09 1.01
3 -0.61 -0.62 0.06 1.01
4 -0.12 -0.08 0.05 1.03
5 0.49 0.37 0.05 1.00
Sigma
1,1 1.00 1.00 0.00 1.00
Code
print(coef(model))
Output
Estimate (sd)
1 a -1.11 (0.06)
2 b_A 1.51 (0.09)
3 ASC_A -0.62 (0.06)
4 c_A -0.08 (0.05)
5 c_B 0.37 (0.05)
Code
print(model)
Output
Probit model 'opinion_on_sth ~ age + gender'.
Code
summary(model)
Output
Probit model
Formula: opinion_on_sth ~ age + gender
R: 1000, B: 500, Q: 1
Level: Fixed first utility threshold to 0.
Scale: Error term variance fixed to 1.
Gibbs sample statistics
true mean sd R^
alpha
1 0.59 0.64 0.04 1.01
2 1.18 1.17 0.07 1.00
Sigma
1,1 1.00 1.00 0.00 NA
d
1 0.00 -0.55 0.07 1.00
2 1.00 0.54 0.04 1.00
3 2.00 2.78 0.22 1.05
Code
print(coef(model))
Output
Estimate (sd)
1 age 0.64 (0.04)
2 gender 1.17 (0.07)
Code
print(model)
Output
Probit model 'product ~ price'.
Code
summary(model)
Output
Probit model
Formula: product ~ price
R: 1000, B: 500, Q: 1
Level: Utility differences with respect to alternative 'C'.
Scale: Coefficient of the 1. error term variance fixed to 1.
Gibbs sample statistics
true mean sd R^
alpha
1 1.00 1.04 0.05 1.00
2 -0.56 -0.57 0.05 1.00
3 -1.63 -1.65 0.09 1.01
Sigma
1,1 1.00 1.00 0.00 1.00
1,2 0.39 0.39 0.08 1.03
2,2 0.84 0.95 0.13 1.00
Code
print(coef(model))
Output
Estimate (sd)
1 price 1.04 (0.05)
2 ASC_A -0.57 (0.05)
3 ASC_B -1.65 (0.09)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.