prctilemlx | R Documentation |
Compute and display percentiles of the empiricial distribution of longitudinal data.
prctilemlx(
r = NULL,
col = NULL,
project = NULL,
outputVariableName = NULL,
number = 8,
level = 80,
plot = TRUE,
color = NULL,
group = NULL,
facet = TRUE,
labels = NULL,
band = NULL
)
r |
a data frame with a column ‘id’, a column ‘time’ and a column with values. The times should be the same for each individual. |
col |
a vector with the three column indexes for ‘id’, ‘time/x’ and ‘y’. Default = c(1, 2,3). |
project |
simulx project filename (with extension ".smlx") |
outputVariableName |
name of the output to consider. By default the first output will be consider. You must define either a 'r' dataframe and the associated 'col' argument or a simulx project and the name of the output 'outputVariableName" |
number |
the number of intervals (i.e. the number of percentiles minus 1). |
level |
the largest interval (i.e. the difference between the lowest and the highest percentile). |
plot |
if |
color |
colors to be used for the plots In case of one group or facet = TRUE, only the first color will be used |
group |
variable to be used for defining groups (by default, ‘group’ is used when it exists) |
facet |
makes subplots for different groups if |
labels |
vector of strings |
band |
is deprecated (use number and level instead) ; a list with two fields
|
See http://simulx.webpopix.org/mlxr/prctilemlx/ for more details.
a ggplot object if plot=TRUE
; otherwise, a list with fields:
proba a vector of probabilities of length band$number+1
color a vector of colors used for the plot of length band$number
y a data frame with the values of the empirical percentiles computed at each time point
## Not run:
myModel <- inlineModel("
[LONGITUDINAL]
input = {ka, V, Cl}
EQUATION:
C = pkmodel(ka,V,Cl)
[INDIVIDUAL]
input = {ka_pop, V_pop, Cl_pop, omega_ka, omega_V, omega_Cl}
DEFINITION:
ka = {distribution=lognormal, reference=ka_pop, sd=omega_ka}
V = {distribution=lognormal, reference=V_pop, sd=omega_V }
Cl = {distribution=lognormal, reference=Cl_pop, sd=omega_Cl}
")
N=2000
pop.param <- c(
ka_pop = 1, omega_ka = 0.5,
V_pop = 10, omega_V = 0.4,
Cl_pop = 1, omega_Cl = 0.3)
res <- simulx(model = myModel,
parameter = pop.param,
treatment = list(time=0, amount=100),
group = list(size=N, level='individual'),
output = list(name='C', time=seq(0,24,by=0.1)))
# res$C is a data.frame with 2000x241=482000 rows and 3 columns
head(res$C)
# we can display the empirical percentiles of C using the default
# settings (i.e. percentiles of order 10%, 20%, ... 90%)
prctilemlx(res$C)
# The 3 quartiles (i.e. percentiles of order 25%, 50% and 75%) are displayed by
# selecting a 50% interval splitted into 2 subintervals
prctilemlx(res$C, number=2, level=50)
# A one 90% interval can be displayed using only one interval
prctilemlx(res$C, number=1, level=90)
# or 75 subintervals in order to better represent the continuous distribution
# of the data within this interval
prctilemlx(res$C, number=75, level=90)
# prctilemlx produces a ggplot object that can be modified
pl <- prctilemlx(res$C, number=4, level=80)
pl + ylab("concentration") + ggtitle("predictive distribution")
# The percentiles are not plotted by setting plot=FALSE
pr.out <- prctilemlx(res$C, number=4, level=80, plot=FALSE)
print(pr.out$proba)
print(pr.out$color)
print(pr.out$y[1:5,])
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.