Nothing
##############################################################################
# Sepfit
# checks against original implementation of subbotools
# Depends on using the same sample to fit as the subbotools package
# since R changes the rng in each version, to work this test must be manually
# updated each time or use a constant sample
skip()
paste0("Sepfit")
test_that("SubLaplace:", {
# sepfit -V 1 < sublaplace.txt
#
#--- FINAL RESULT --------------------------------------------------
# | correlation matrix
# value std.err | mu si la al
# mu= -0.0002411 0.001 | -- 0.0000 0.0000 -0.0000
# si= 4.004 0.001 | -0.0000 -- 0.0000 -0.0000
# la= 0.0002655 0.001 | -0.0000 -0.0000 -- -0.0000
# al= 0.5001 0.001 | -0.0000 -0.0000 -0.0000 --
#
# Upper triangle: covariances
# Lower triangle: correlation coefficients
#-------------------------------------------------------------------
#
# mu sigma lambda alpha log-like
#-2.4108e-04 4.0035e+00 2.6547e-04 5.0010e-01 3.3857e+00
orig_value <-
generate_orig_dt(
coef = c(-2.4108e-04, 4.0035e+00, 2.6547e-04, 5.0010e-01),
log_likelihood = 3.3857e+00,
std_error = c(0.001, 0.001, 0.001, 0.001)
# we pass the transposed matrix and the code corrects it
, matrix =
c(
NA, 0.0000, 0.0000, -0.0000,
-0.0000, NA, 0.0000, -0.0000,
-0.0000, -0.0000, NA, -0.0000,
-0.0000, -0.0000, -0.0000, NA
),
distribution = "sepfit"
)
check_fits(orig_value, .5, sepfit)
data_test <- generate_datasets(.5)
subbo_test <- sepfit(data_test$x, verb = 3)
})
test_that("Laplace:", {
# sepfit -V 1 < laplace.txt
#
#--- FINAL RESULT --------------------------------------------------
# | correlation matrix
# value std.err | mu si la al
# mu= 0.002005 0.001 | -- 0.0000 0.0000 -0.0000
# si= 0.9995 0.001 | -0.0000 -- 0.0000 -0.0000
# la= -0.001532 0.001 | -0.0000 -0.0000 -- -0.0000
# al= 1.001 0.001 | -0.0000 -0.0000 -0.0000 --
#
# Upper triangle: covariances
# Lower triangle: correlation coefficients
#-------------------------------------------------------------------
#
# mu sigma lambda alpha log-like
# 2.0055e-03 9.9954e-01 -1.5315e-03 1.0013e+00 1.6923e+00
orig_value <-
generate_orig_dt(
coef = c(2.0055e-03, 9.9954e-01, -1.5315e-03, 1.0013e+00),
log_likelihood = 1.6923e+00,
std_error = c(0.001, 0.001, 0.001, 0.001),
matrix =
c(
NA, 0.0000, 0.0000, -0.0000,
-0.0000, NA, 0.0000, -0.0000,
-0.0000, -0.0000, NA, -0.0000,
-0.0000, -0.0000, -0.0000, NA
),
distribution = "sepfit"
)
check_fits(orig_value, 1, sepfit)
})
test_that("Subnormal:", {
# sepfit -V 1 < subnormal.txt
#
#--- FINAL RESULT --------------------------------------------------
# | correlation matrix
# value std.err | mu si la al
# mu= -0.0003492 0.001 | -- 0.0000 0.0000 -0.0000
# si= 0.7632 0.001 | -0.0000 -- 0.0000 -0.0000
# la= -0.0003853 0.001 | -0.0000 -0.0000 -- -0.0000
# al= 1.501 0.001 | -0.0000 -0.0000 -0.0000 --
#
# Upper triangle: covariances
# Lower triangle: correlation coefficients
#-------------------------------------------------------------------
#
# mu sigma lambda alpha log-like
#-3.4922e-04 7.6317e-01 -3.8533e-04 1.5010e+00 1.2572e+00
orig_value <-
generate_orig_dt(
coef = c(-3.4922e-04, 7.6317e-01, -3.8533e-04, 1.5010e+00),
log_likelihood = 1.2572e+00,
std_error = c(0.001, 0.001, 0.001, 0.001),
matrix =
c(
NA, 0.0000, 0.0000, -0.0000,
-0.0000, NA, 0.0000, -0.0000,
-0.0000, -0.0000, NA, -0.0000,
-0.0000, -0.0000, -0.0000, NA
),
distribution = "sepfit"
)
check_fits(orig_value, 1.5, sepfit)
})
test_that("Normal:", {
# sepfit -V 1 < normal.txt
#
#--- FINAL RESULT --------------------------------------------------
# | correlation matrix
# value std.err | mu si la al
# mu= 1.697e-05 0.001 | -- 0.0000 0.0000 -0.0000
# si= 0.7077 0.001 | -0.0000 -- 0.0000 -0.0000
# la= 7.18e-05 0.001 | -0.0000 -0.0000 -- -0.0000
# al= 2.003 0.001 | -0.0000 -0.0000 -0.0000 --
#
# Upper triangle: covariances
# Lower triangle: correlation coefficients
#-------------------------------------------------------------------
#
# mu sigma lambda alpha log-like
# 1.6975e-05 7.0771e-01 7.1803e-05 2.0032e+00 1.0725e+00
orig_value <-
generate_orig_dt(
coef = c(1.6975e-05, 7.0771e-01, 7.1803e-05, 2.0032e+00),
log_likelihood = 1.0725e+00,
std_error = c(0.001, 0.001, 0.001, 0.001),
matrix =
c(
NA, 0.0000, 0.0000, -0.0000,
-0.0000, NA, 0.0000, -0.0000,
-0.0000, -0.0000, NA, -0.0000,
-0.0000, -0.0000, -0.0000, NA
),
distribution = "sepfit"
)
check_fits(orig_value, 2, sepfit)
})
test_that("SuperNormal:", {
# sepfit -V 1 < supernormal.txt
#
#--- FINAL RESULT --------------------------------------------------
# | correlation matrix
# value std.err | mu si la al
# mu= -0.0005465 0.001 | -- 0.0000 0.0000 -0.0000
# si= 0.6928 0.001 | -0.0000 -- 0.0000 -0.0000
# la= 7.536e-05 0.001 | -0.0000 -0.0000 -- -0.0000
# al= 2.498 0.001 | -0.0000 -0.0000 -0.0000 --
#
# Upper triangle: covariances
# Lower triangle: correlation coefficients
#-------------------------------------------------------------------
#
# mu sigma lambda alpha log-like
#-5.4652e-04 6.9284e-01 7.5359e-05 2.4982e+00 9.7328e-01
orig_value <-
generate_orig_dt(
coef = c(-5.4652e-04, 6.9284e-01, 7.5359e-05, 2.4982e+00),
log_likelihood = 9.7328e-01,
std_error = c(0.001, 0.001, 0.001, 0.001),
matrix =
c(
NA, 0.0000, 0.0000, -0.0000,
-0.0000, NA, 0.0000, -0.0000,
-0.0000, -0.0000, NA, -0.0000,
-0.0000, -0.0000, -0.0000, NA
),
distribution = "sepfit"
)
check_fits(orig_value, 2.5, sepfit)
})
##############################################################################
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.