R/crc_rec.R

Defines functions scrcrec gcrcrec crcrec

Documented in crcrec gcrcrec scrcrec

#########################################################################
#      $Log: Crc_Rec.S,v $
#########################################################################
#
#               (c) Copyright  1997                             
#                          by                                   
#      Author: Rene Carmona, Bruno Torresani, Wen-Liang Hwang   
#                  Princeton University
#                  All right reserved                           
#########################################################################


#########################################################################
#
#	Functions to reconstruct a signal from the output of
#	 the crazy climber algorithm.
#
#########################################################################

crcrec <- function(siginput, inputwt, beemap, noct, nvoice, compr,
                   minnbnodes = 2, w0 = 2*pi, bstep = 5, ptile = 0.01,
                   epsilon = 0, fast = FALSE, para = 5, real = FALSE,
                   plot = 2)
#########################################################################
#     crcrec:
#     -------
#      Reconstruction of a real valued signal from ridges found by 
#      crazy climbers on a wavelet transform.
#
#      input:
#      ------
#      siginput: input signal
#      inputwt: continuous wavelet transform (output of cwt)
#      beemap: output of crazy climber algorithm
#      noct: number of octaves (powers of 2)
#      nvoice: number of different scales per octave
#      compr: subsampling rate for the ridge
#      bstep: used for the chaining
#      ptile: 
#      epsilon: coeff of the Q2 part of reconstruction kernel
#      fast: if set to TRUE, computes the Q2 kernel by Riemann sums
#            if not, uses a Romberg adaptive step quadrature.
#      para:
#      plot: plot the original and reconstructed signal in display
#
#      output:
#      -------
#      rec: reconstructed signal
#      ordered: image of the ridges (with different colors)
#      comp: 2D array containing the signals reconstructed from ridges
#
#########################################################################
{
  tmp <- cfamily(beemap,bstep,ptile=ptile)
  chain <- tmp$chain
  nbchain <- tmp$nbchain
  ordered <- tmp$ordered
  sigsize <- length(siginput)
  rec <- numeric(sigsize)
  plnb <- 0
  
  if(plot != FALSE) {
    par(mfrow=c(2,1))
    plot.ts(siginput, main="Original signal")
    image(tmp$ordered, main="Chained Ridges")
  }
  
  tmp <- matrix(0,nbchain,length(siginput))
  
  totnbnodes <- 0
  idx <- numeric(nbchain)	
  p <- 0
  
  for(j in 1:nbchain) {
    phi.x.min <- 2 * 2^(chain[j,3]/nvoice)
    if(chain[j,2] > (para*phi.x.min)) { 
      
      cat("Chain number",j)
      
      phi.x.max <- 2 * 2^(chain[j,(2+chain[j,2])]/nvoice)
      x.min <- chain[j,1]
      x.max <- chain[j,1] + chain[j,2] - 1
      x.min <- x.min - round(para * phi.x.min)
      x.max <- x.max + round(para * phi.x.max)
      
      tmp2 <- regrec(siginput[chain[j,1]:(chain[j,1]+chain[j,2]-1)],
                     inputwt[chain[j,1]:(chain[j,1]+chain[j,2]-1),],
                     chain[j,3:(chain[j,2]+2)], compr,noct,nvoice,
                     epsilon, w0 = w0 ,fast = fast, para = para,
                     minnbnodes = minnbnodes, real = real)
      
      if(is.list(tmp2)==TRUE) {
        totnbnodes <- totnbnodes + tmp2$nbnodes
        
        np <- length(tmp2$sol)
        start <- max(1,x.min)
        end <- min(sigsize,x.min+np-1)
        start1 <- max(1,2-x.min)
        end1 <- min(np, sigsize +1 - x.min)
        end <- end1 - start1 + start
        rec[start:end] <- rec[start:end] + tmp2$sol[start1:end1]
        
        tmp[j,start:end] <- Re(tmp2$sol[start1:end1])
      }
      plnb <- plnb + 1
      p <- p + 1
      idx[p] <- j
    }
  }
  
  if(plot == 1) {
    par(mfrow=c(2,1))
    par(cex=1.1)
    plot.ts(siginput, main="Original signal")
    plot.ts(Re(rec), main="Reconstructed signal")
  }
  else {
    if(plot == 2) {
      par(mfrow=c(plnb+2,1))
      par(mar=c(2,0,0,0))
      par(cex=1.1)
      par(err=-1)
      plot.ts(siginput, main="Original signal")
      
      for (j in 1:p)
        plot.ts(tmp[idx[j],])
      plot.ts(Re(rec), main="Reconstructed signal")
    }
  }
  
  cat("Total number of ridge samples used: ", totnbnodes, "\n")
  par(mfrow=c(1,1))
  list(rec=rec, ordered = ordered, chain = chain, comp = tmp)
}

gcrcrec <- function(siginput, inputgt, beemap, nvoice, freqstep, scale,
                    compr, bstep = 5, ptile = .01, epsilon = 0,
                    fast = TRUE, para = 5, minnbnodes = 3,
                    hflag = FALSE, real= FALSE, plot = 2)
#########################################################################
#     gcrcrec:
#     -------
#      Reconstruction of a real valued signal from ridges found by 
#      crazy climbers on the gabor transform.
#
#      input:
#      ------
#      siginput: input signal
#      inputgt: continuous gabor transform (output of cgt)
#      beemap: output of crazy climber algorithm
#      nvoice: number of different frequencies
#      freqstep: difference between two consecutive frequencies
#      scale: scale of the window
#      compr: subsampling rate for the ridge
#      bstep: used for the chaining
#      ptile: 
#      epsilon: coeff of the Q2 part of reconstruction kernel
#      fast: if set to TRUE, computes the Q2 kernel by Riemann sums
#            if not, uses a Romberg adaptive step quadrature.
#      para:
#      minnbnodes: minimal number of nodes for a sampled ridge.
#      hflag: if set to FALSE, uses the identity as first term
#             in the reconstruction kernel. If not, uses Q1 instead. 
#      plot: if set to 1, displays the signal, the components, and
#            signal and reconstruction one after another. If set to
#            2, displays the signal, the components, and the
#            reconstruction on the same page. Else, no plot.
#      real: if set to true, uses only real constraints.
#
#      output:
#      -------
#      rec: reconstructed signal
#      ordered: image of the ridges (with different colors)
#      comp: 2D array containing the signals reconstructed from ridges
#
#########################################################################
{
  tmp <- cfamily(beemap,bstep,ptile=ptile)
  chain <- tmp$chain
  nbchain <- tmp$nbchain
  ordered <- tmp$ordered
  sigsize <- length(siginput)
  rec <- numeric(sigsize)
  plnb <- 0
  
  if(plot != FALSE) {
    par(mfrow=c(2,1))
    plot.ts(siginput, main="Original signal")
    image(tmp$ordered, main="Chained Ridges")
  }
  
  totnbnodes <- 0
  tmp <- matrix(0,nbchain,length(siginput))
  for(j in 1:nbchain) {
    if(chain[j,2] > scale) {
      nbnodes <- round(chain[j,2]/compr)
      if(nbnodes < minnbnodes)
        nbnodes <- minnbnodes
      
      totnbnodes <- totnbnodes + nbnodes
      
      cat("Chain number",j)
      
      phi.x.min <- scale
      phi.x.max <- scale
      x.min <- chain[j,1]
      x.max <- chain[j,1] + chain[j,2] - 1
      x.min <- x.min - round(para * phi.x.min)
      x.max <- x.max + round(para * phi.x.max)
      x.inc <- 1
      np <- as.integer((x.max-x.min)/x.inc) + 1
      
      tmp2 <- gregrec(siginput[chain[j,1]:(chain[j,1]+chain[j,2]-1)],
                      inputgt[chain[j,1]:(chain[j,1]+chain[j,2]-1),],
                      chain[j,3:(chain[j,2]+2)], nbnodes, nvoice,
                      freqstep, scale, epsilon, fast, para = para,
                      hflag = hflag, real = real)

      start <- max(1,x.min)
      end <- min(sigsize,x.min+np-1)
      start1 <- max(1,2-x.min)
      end1 <- min(np, sigsize +1 - x.min)
      end <- end1 - start1 + start
      rec[start:end] <- rec[start:end] + tmp2$sol[start1:end1]
      tmp[j,start:end] <- tmp2$sol[start1:end1]
      
      plnb <- plnb + 1
      plot.ts(tmp[j,])
    }
    
  }
  
  if(plot == 1) {
    par(mfrow=c(2,1))
    par(cex=1.1)
    plot.ts(siginput, main="Original signal")
    plot.ts(rec, main="Reconstructed signal")
  }
  else if (plot == 2) {
    par(mfrow=c(plnb+2,1))
    par(mar=c(2,4,4,4))
    par(cex=1.1)
    par(err=-1)
    plot.ts(siginput, main="Original signal")
    
    for (j in 1:nbchain)
      plot.ts(tmp[j,])
    plot.ts(rec, main="Reconstructed signal")
  }
  
  cat("Total number of ridge samples used: ", totnbnodes, "\n")
  par(mfrow=c(1,1))
  list(rec = rec, ordered = ordered, chain = chain, comp = tmp)
}

scrcrec <- function(siginput, tfinput, beemap, bstep = 5, ptile = 0.01,
                    plot = 2)
#########################################################################
#     scrcrec:
#     --------
#      Simple reconstruction of a real valued signal from ridges found by 
#      crazy climbers.
#
#      input:
#      ------
#      siginput: input signal
#      tfinput: continuous time-frequency transform (output of cwt or cgt)
#      beemap: output of crazy climber algorithm
#      bstep: used for the chaining
#      ptile: 
#      plot: if set to 1, displays the signal, the components, and
#            signal and reconstruction one after another. If set to
#            2, displays the signal, the components, and the
#            reconstruction on the same page. Else, no plot.
#
#      output:
#      -------
#      rec: reconstructed signal
#      ordered: image of the ridges (with different colors)
#      comp: 2D array containing the signals reconstructed from ridges
#
#########################################################################
{
  tmp <- cfamily(beemap,bstep, ptile=ptile)
  chain <- tmp$chain
  nbchain <- tmp$nbchain
  rec <- numeric(length(siginput))
  
  if(plot != FALSE) {
    par(mfrow=c(2,1))
    plot.ts(siginput, main="Original signal")
    image(tmp$ordered, main="Chained Ridges")
  }
  
  npl(1)
  tmp3 <- matrix(0,nbchain,length(siginput))
  rdg <- numeric(dim(tfinput)[1])
  
  for (j in 1:nbchain) {
    bnext <- chain[j,1]
    for(k in 1:chain[j,2]) {
      rdg[bnext] <- chain[j,2+k]
      bnext <- bnext + 1
    }
    tmp3[j,] <- sridrec(tfinput,rdg)
    rec <- rec + tmp3[j,]
    rdg[] <- 0
    ## plot.ts(tmp3[j,])
  }
  
  if(plot <= 2) {
    par(mfrow=c(2,1))
    plot.ts(siginput, main="Original signal")
    plot.ts(rec, main="Reconstructed signal")
  }
  else {
    par(mfrow=c(nbchain+2,1))
    par(mar=rep(2,4))
    par(err=-1)
    plot.ts(siginput, main="Original signal")
    
    for(j in 1:nbchain)
      plot.ts(tmp3[j,],main=j)
      
    plot.ts(rec, main="Reconstructed signal")
  }
  list(rec=rec, ordered=tmp$ordered, chain=tmp$chain, comp=tmp3)
}

Try the Rwave package in your browser

Any scripts or data that you put into this service are public.

Rwave documentation built on Oct. 22, 2022, 1:05 a.m.