Description Usage Arguments Details Value Author(s) References See Also
This function performs Monte Carlo maximum likelihood (MCML) estimation for the geostatistical Poisson model with log link function.
1 2 3 4 5 6 7 8 9 10 11 | Aggregated_poisson_log_MCML(
y,
D,
m,
corr,
par0,
control.mcmc,
S.sim,
Denominator,
messages
)
|
y |
the data |
D |
the design matrix |
m |
the offset term |
corr |
the correlation matrix from exponential correlation function |
par0 |
the initial parameter of the fixed effects beta, the variance sigmasq and the scale parameter phi, specified as c(beta, sigma2, phi) |
control.mcmc |
output from |
S.sim |
the posterior sample of the linear predictor given the initial parameters |
Denominator |
the value of the denominator of the likelihood |
messages |
logical; if message=TRUE, it prints the results objective function and the parameters at every phi iteration. Default is FALSE. |
The function helps to obtain the MCML estimate for a given value of correlation matrix, i.e for a given value of the scale parameter phi.
estimate
: estimates of the model parameters; beta's and with sigma2 on the log scale
covariance
: covariance matrix of the MCML estimates.
log.lik
: maximum value of the log-likelihood.
S
: the linear predictor given the initial parameter
Olatunji O. Johnson o.johnson@lancaster.ac.uk
Emanuele Giorgi e.giorgi@lancaster.ac.uk
Peter J. Diggle p.diggle@lancaster.ac.uk
Giorgi, E., & Diggle, P. J. (2017). PrevMap: an R package for prevalence mapping. Journal of Statistical Software, 78(8), 1-29. doi:10.18637/jss.v078.i08.
Christensen, O. F. (2004). Monte Carlo maximum likelihood in model-based geostatistics. Journal of Computational and Graphical Statistics 13, 702-718.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.