| sim1.2017Liu | R Documentation | 
Given a multivariate sample X, hypothesized mean \mu_0 and covariance \Sigma_0, it tests
H_0 : \mu_x = \mu_0 \textrm{ and } \Sigma_x = \Sigma_0 \quad vs\quad H_1 : \textrm{ not } H_0
using the procedure by Liu et al. (2017).
sim1.2017Liu(X, mu0 = rep(0, ncol(X)), Sigma0 = diag(ncol(X)))
X | 
 an   | 
mu0 | 
 a length-  | 
Sigma0 | 
 a   | 
a (list) object of S3 class htest containing: 
a test statistic.
p-value under H_0.
alternative hypothesis.
name of the test.
name(s) of provided sample data.
liu_simultaneous_2017SHT
## CRAN-purpose small example
smallX = matrix(rnorm(10*3),ncol=3)
sim1.2017Liu(smallX) # run the test
## Not run: 
## empirical Type 1 error 
niter   = 1000
counter = rep(0,niter)  # record p-values
for (i in 1:niter){
  X = matrix(rnorm(50*10), ncol=10)
  counter[i] = ifelse(sim1.2017Liu(X)$p.value < 0.05, 1, 0)
}
## print the result
cat(paste("\n* Example for 'sim1.2017Liu'\n","*\n",
"* number of rejections   : ", sum(counter),"\n",
"* total number of trials : ", niter,"\n",
"* empirical Type 1 error : ",round(sum(counter/niter),5),"\n",sep=""))
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.