SimModel2: Simulate from the type two state-space Model on Stiefel...

Description Usage Arguments Details Value Author(s) Examples

View source: R/simulation.R

Description

This function simulates from the type two model on Stiefel manifold. See Details part below.

Usage

1
2
SimModel2(iT, mX = NULL, mZ = NULL, mY = NULL, beta_0, alpha,
  mB = NULL, Omega = NULL, vD, burnin = 100)

Arguments

iT

the sample size.

mX

the matrix containing X_t with dimension T \times q_1.

mZ

the matrix containing Z_t with dimension T \times q_2.

mY

initial values of the dependent variable for ik-1 up to 0. If mY = NULL, then no lagged dependent variables in regressors.

beta_0

the initial beta, iqx+ip*ik, y_1,t-1,y_1,t-2,...,y_2,t-1,y_2,t-2,....

alpha

the α matrix, p \times r.

mB

the coefficient matrix \boldsymbol{B} before mZ with dimension p \times q_2.

Omega

covariance matrix of the errors.

vD

vector of the diagonals of D.

burnin

burn-in sample size (matrix Langevin).

Details

The type two model on Stiefel manifold takes the form:

\boldsymbol{y}_t \quad = \quad \boldsymbol{α} \boldsymbol{β}_t ' \boldsymbol{x}_t + \boldsymbol{B}' \boldsymbol{z}_t + \boldsymbol{\varepsilon}_t

\boldsymbol{β}_{t+1} | \boldsymbol{β}_{t} \quad \sim \quad ML (q_1, r, \boldsymbol{β}_{t} \boldsymbol{D})

where \boldsymbol{y}_t is a p-vector of the dependent variable, \boldsymbol{x}_t and \boldsymbol{z}_t are explanatory variables wit dimension q_1 and q_2, \boldsymbol{x}_t and \boldsymbol{z}_t have no overlap, matrix \boldsymbol{B} is the coefficients for \boldsymbol{z}_t, \boldsymbol{\varepsilon}_t is the error vector.

The matrices \boldsymbol{α} and \boldsymbol{β}_t have dimensions p \times r and q_1 \times r, respectively. Note that r is strictly smaller than both p and q_1. \boldsymbol{α} and \boldsymbol{β}_t are both non-singular matrices. \boldsymbol{β}_t is time-varying while \boldsymbol{α} is time-invariant.

Furthermore, \boldsymbol{β}_t fulfills the condition \boldsymbol{β}_t' \boldsymbol{β}_t = \boldsymbol{I}_r, and therefor it evolves on the Stiefel manifold.

ML (p, r, \boldsymbol{β}_t \boldsymbol{D}) denotes the Matrix Langevin distribution or matrix von Mises-Fisher distribution on the Stiefel manifold. Its density function takes the form

f(\boldsymbol{β_{t+1}} ) = \frac{ \mathrm{etr} ≤ft\{ \boldsymbol{D} \boldsymbol{β}_{t}' \boldsymbol{β_{t+1}} \right\} }{ _{0}F_1 (\frac{p}{2}; \frac{1}{4}\boldsymbol{D}^2 ) }

where \mathrm{etr} denotes \mathrm{exp}(\mathrm{tr}()), and _{0}F_1 (\frac{p}{2}; \frac{1}{4}\boldsymbol{D}^2 ) is the (0,1)-type hypergeometric function for matrix.

Note that the function does not add intercept automatically.

Value

A list containing the sampled data and the dynamics of beta.

The object is a list containing the following components:

dData

a data.frame of the sampled data

aBeta

an array of the \boldsymbol{β}_t with the dimension T \times q_1 \times r

Author(s)

Yukai Yang, yukai.yang@statistik.uu.se

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
iT = 50
ip = 2
ir = 1
iqx =3
iqz=2
ik = 1

if(iqx==0) mX=NULL else mX = matrix(rnorm(iT*iqx),iT, iqx)
if(iqz==0) mZ=NULL else mZ = matrix(rnorm(iT*iqz),iT, iqz)
if(ik==0) mY=NULL else mY = matrix(0, ik, ip)

alpha = matrix(c(runif_sm(num=1,ip=ip,ir=ir)), ip, ir)
beta_0 = matrix(c(runif_sm(num=1,ip=ip*ik+iqx,ir=ir)), ip*ik+iqx, ir)
if(ip*ik+iqz==0) mB=NULL else mB = matrix(c(runif_sm(num=1,ip=(ip*ik+iqz)*ip,ir=1)), ip, ip*ik+iqz)
vD = 50

ret = SimModel2(iT=iT, mX=mX, mZ=mZ, mY=mY, alpha=alpha, beta_0=beta_0, mB=mB, vD=vD)

SMFilter documentation built on May 1, 2019, 8:01 p.m.