Nothing
## ----setup, include = FALSE---------------------------------------------------
# # jss style
# knitr::opts_chunk$set(prompt=TRUE, echo = TRUE, highlight = FALSE, continue = " + ", comment = "")
# options(replace.assign=TRUE, width=90, prompt="R> ")
# rmd style
knitr::opts_chunk$set(collapse = FALSE, comment = "#>", warning = FALSE, message = FALSE)
# load packages
library(ggplot2)
library(SSN2)
## ---- eval = FALSE------------------------------------------------------------
# library(SSN2)
## -----------------------------------------------------------------------------
citation(package = "SSN2")
## -----------------------------------------------------------------------------
path <- system.file("lsndata/MiddleFork04.ssn", package = "SSN2")
## -----------------------------------------------------------------------------
copy_lsn_to_temp()
path <- paste0(tempdir(), "/MiddleFork04.ssn")
## -----------------------------------------------------------------------------
mf04p <- ssn_import(
path = path,
predpts = c("pred1km", "CapeHorn", "Knapp"),
overwrite = TRUE
)
## -----------------------------------------------------------------------------
summary(mf04p)
## ---- eval = FALSE------------------------------------------------------------
# library(ggplot2)
## -----------------------------------------------------------------------------
names(mf04p$preds)
## -----------------------------------------------------------------------------
ggplot() +
geom_sf(data = mf04p$edges) +
geom_sf(data = mf04p$preds$pred1km, pch = 17, color = "blue") +
geom_sf(data = mf04p$obs, color = "brown", size = 2) +
theme_bw()
## -----------------------------------------------------------------------------
ssn_create_distmat(
ssn.object = mf04p,
predpts = c("pred1km", "CapeHorn", "Knapp"),
among_predpts = TRUE,
overwrite = TRUE
)
## -----------------------------------------------------------------------------
ggplot() +
geom_sf(data = mf04p$edges) +
geom_sf(data = mf04p$obs, aes(color = Summer_mn), size = 2) +
scale_color_viridis_c(limits = c(-1.5, 17), option = "H") +
theme_bw()
## -----------------------------------------------------------------------------
tg <- Torgegram(
formula = Summer_mn ~ ELEV_DEM + AREAWTMAP,
ssn.object = mf04p,
type = c("flowcon", "flowuncon", "euclid")
)
## -----------------------------------------------------------------------------
plot(tg)
## -----------------------------------------------------------------------------
ssn_mod <- ssn_lm(
formula = Summer_mn ~ ELEV_DEM + AREAWTMAP,
ssn.object = mf04p,
tailup_type = "exponential",
taildown_type = "spherical",
euclid_type = "gaussian",
additive = "afvArea"
)
## -----------------------------------------------------------------------------
summary(ssn_mod)
## -----------------------------------------------------------------------------
varcomp(ssn_mod)
## -----------------------------------------------------------------------------
tidy(ssn_mod, conf.int = TRUE)
## -----------------------------------------------------------------------------
glance(ssn_mod)
## -----------------------------------------------------------------------------
ssn_mod2 <- ssn_lm(
formula = Summer_mn ~ ELEV_DEM + AREAWTMAP,
ssn.object = mf04p,
taildown_type = "spherical"
)
glances(ssn_mod, ssn_mod2)
## -----------------------------------------------------------------------------
ml_mod <- ssn_lm(
formula = Summer_mn ~ ELEV_DEM + AREAWTMAP,
ssn.object = mf04p,
tailup_type = "exponential",
taildown_type = "spherical",
euclid_type = "gaussian",
additive = "afvArea",
estmethod = "ml"
)
ml_mod2 <- ssn_lm(
formula = Summer_mn ~ AREAWTMAP,
ssn.object = mf04p,
tailup_type = "exponential",
taildown_type = "spherical",
euclid_type = "gaussian",
additive = "afvArea",
estmethod = "ml"
)
glances(ml_mod, ml_mod2)
## -----------------------------------------------------------------------------
loocv_mod <- loocv(ssn_mod)
loocv_mod$RMSPE
loocv_mod2 <- loocv(ssn_mod2)
loocv_mod2$RMSPE
## -----------------------------------------------------------------------------
aug_ssn_mod <- augment(ssn_mod)
aug_ssn_mod
## ---- results = "hide"--------------------------------------------------------
library(sf)
st_write(aug_ssn_mod, paste0(tempdir(), "/aug_ssn_mod.shp"))
## -----------------------------------------------------------------------------
plot(ssn_mod, which = 1)
## ---- results = "hide"--------------------------------------------------------
predict(ssn_mod, newdata = "pred1km")
## -----------------------------------------------------------------------------
aug_preds <- augment(ssn_mod, newdata = "pred1km")
aug_preds[, ".fitted"]
## -----------------------------------------------------------------------------
ggplot() +
geom_sf(data = mf04p$edges) +
geom_sf(data = aug_preds, aes(color = .fitted), size = 2) +
scale_color_viridis_c(limits = c(-1.5, 17), option = "H") +
theme_bw()
## ---- results = "hide"--------------------------------------------------------
st_write(aug_preds, paste0(tempdir(), "/aug_preds.gpkg"))
## ---- results = "hide"--------------------------------------------------------
predict(ssn_mod)
predict(ssn_mod, newdata = "all")
## -----------------------------------------------------------------------------
predict(ssn_mod, newdata = "pred1km", block = TRUE, interval = "prediction")
## -----------------------------------------------------------------------------
euclid_init <- euclid_initial("gaussian", de = 1, known = "de")
euclid_init
## -----------------------------------------------------------------------------
ssn_init <- ssn_lm(
formula = Summer_mn ~ ELEV_DEM + AREAWTMAP,
ssn.object = mf04p,
tailup_type = "exponential",
taildown_type = "spherical",
euclid_initial = euclid_init,
additive = "afvArea"
)
ssn_init
## -----------------------------------------------------------------------------
ssn_rand <- ssn_lm(
formula = Summer_mn ~ ELEV_DEM + AREAWTMAP,
ssn.object = mf04p,
tailup_type = "exponential",
taildown_type = "spherical",
euclid_type = "gaussian",
additive = "afvArea",
random = ~ as.factor(netID)
)
ssn_rand
## -----------------------------------------------------------------------------
ssn_part <- ssn_lm(
formula = Summer_mn ~ ELEV_DEM + AREAWTMAP,
ssn.object = mf04p,
tailup_type = "exponential",
taildown_type = "spherical",
euclid_type = "gaussian",
additive = "afvArea",
partition_factor = ~ as.factor(netID)
)
ssn_part
## -----------------------------------------------------------------------------
ggplot() +
geom_sf(data = mf04p$edges) +
geom_sf(data = mf04p$obs, aes(color = C16), size = 2) +
scale_color_viridis_c(option = "H") +
theme_bw()
## -----------------------------------------------------------------------------
ssn_pois <- ssn_glm(
formula = C16 ~ ELEV_DEM + AREAWTMAP,
family = "poisson",
ssn.object = mf04p,
tailup_type = "epa",
taildown_type = "mariah",
additive = "afvArea"
)
## -----------------------------------------------------------------------------
summary(ssn_pois)
## -----------------------------------------------------------------------------
ssn_nb <- ssn_glm(
formula = C16 ~ ELEV_DEM + AREAWTMAP,
family = "nbinomial",
ssn.object = mf04p,
tailup_type = "epa",
taildown_type = "mariah",
additive = "afvArea"
)
## -----------------------------------------------------------------------------
loocv_pois <- loocv(ssn_pois)
loocv_pois$RMSPE
loocv_nb <- loocv(ssn_nb)
loocv_nb$RMSPE
## -----------------------------------------------------------------------------
tu_params <- tailup_params("exponential", de = 0.4, range = 1e5)
td_params <- taildown_params("spherical", de = 0.1, range = 1e6)
euc_params <- euclid_params("gaussian", de = 0.2, range = 1e3)
nug_params <- nugget_params("nugget", nugget = 0.1)
set.seed(2)
## -----------------------------------------------------------------------------
sims <- ssn_simulate(
family = "gaussian",
ssn.object = mf04p,
network = "obs",
additive = "afvArea",
tailup_params = tu_params,
taildown_params = td_params,
euclid_params = euc_params,
nugget_params = nug_params,
mean = 0,
samples = 1
)
head(sims)
## -----------------------------------------------------------------------------
sims <- ssn_simulate(
family = "binomial",
ssn.object = mf04p,
network = "obs",
additive = "afvArea",
tailup_params = tu_params,
taildown_params = td_params,
euclid_params = euc_params,
nugget_params = nug_params,
mean = 0,
samples = 2
)
head(sims)
## ----get-labels, echo = FALSE-------------------------------------------------
labs <- knitr::all_labels()
labs <- setdiff(labs, c("setup", "get-labels"))
## ----all-code, ref.label=labs, eval = FALSE-----------------------------------
# library(SSN2)
# citation(package = "SSN2")
# path <- system.file("lsndata/MiddleFork04.ssn", package = "SSN2")
# copy_lsn_to_temp()
# path <- paste0(tempdir(), "/MiddleFork04.ssn")
# mf04p <- ssn_import(
# path = path,
# predpts = c("pred1km", "CapeHorn", "Knapp"),
# overwrite = TRUE
# )
# summary(mf04p)
# library(ggplot2)
# names(mf04p$preds)
# ggplot() +
# geom_sf(data = mf04p$edges) +
# geom_sf(data = mf04p$preds$pred1km, pch = 17, color = "blue") +
# geom_sf(data = mf04p$obs, color = "brown", size = 2) +
# theme_bw()
# ssn_create_distmat(
# ssn.object = mf04p,
# predpts = c("pred1km", "CapeHorn", "Knapp"),
# among_predpts = TRUE,
# overwrite = TRUE
# )
# ggplot() +
# geom_sf(data = mf04p$edges) +
# geom_sf(data = mf04p$obs, aes(color = Summer_mn), size = 2) +
# scale_color_viridis_c(limits = c(-1.5, 17), option = "H") +
# theme_bw()
# tg <- Torgegram(
# formula = Summer_mn ~ ELEV_DEM + AREAWTMAP,
# ssn.object = mf04p,
# type = c("flowcon", "flowuncon", "euclid")
# )
# plot(tg)
# ssn_mod <- ssn_lm(
# formula = Summer_mn ~ ELEV_DEM + AREAWTMAP,
# ssn.object = mf04p,
# tailup_type = "exponential",
# taildown_type = "spherical",
# euclid_type = "gaussian",
# additive = "afvArea"
# )
# summary(ssn_mod)
# varcomp(ssn_mod)
# tidy(ssn_mod, conf.int = TRUE)
# glance(ssn_mod)
# ssn_mod2 <- ssn_lm(
# formula = Summer_mn ~ ELEV_DEM + AREAWTMAP,
# ssn.object = mf04p,
# taildown_type = "spherical"
# )
# glances(ssn_mod, ssn_mod2)
# ml_mod <- ssn_lm(
# formula = Summer_mn ~ ELEV_DEM + AREAWTMAP,
# ssn.object = mf04p,
# tailup_type = "exponential",
# taildown_type = "spherical",
# euclid_type = "gaussian",
# additive = "afvArea",
# estmethod = "ml"
# )
# ml_mod2 <- ssn_lm(
# formula = Summer_mn ~ AREAWTMAP,
# ssn.object = mf04p,
# tailup_type = "exponential",
# taildown_type = "spherical",
# euclid_type = "gaussian",
# additive = "afvArea",
# estmethod = "ml"
# )
# glances(ml_mod, ml_mod2)
# loocv_mod <- loocv(ssn_mod)
# loocv_mod$RMSPE
# loocv_mod2 <- loocv(ssn_mod2)
# loocv_mod2$RMSPE
# aug_ssn_mod <- augment(ssn_mod)
# aug_ssn_mod
# library(sf)
# st_write(aug_ssn_mod, paste0(tempdir(), "/aug_ssn_mod.shp"))
# plot(ssn_mod, which = 1)
# predict(ssn_mod, newdata = "pred1km")
# aug_preds <- augment(ssn_mod, newdata = "pred1km")
# aug_preds[, ".fitted"]
# ggplot() +
# geom_sf(data = mf04p$edges) +
# geom_sf(data = aug_preds, aes(color = .fitted), size = 2) +
# scale_color_viridis_c(limits = c(-1.5, 17), option = "H") +
# theme_bw()
# st_write(aug_preds, paste0(tempdir(), "/aug_preds.gpkg"))
# predict(ssn_mod)
# predict(ssn_mod, newdata = "all")
# predict(ssn_mod, newdata = "pred1km", block = TRUE, interval = "prediction")
# euclid_init <- euclid_initial("gaussian", de = 1, known = "de")
# euclid_init
# ssn_init <- ssn_lm(
# formula = Summer_mn ~ ELEV_DEM + AREAWTMAP,
# ssn.object = mf04p,
# tailup_type = "exponential",
# taildown_type = "spherical",
# euclid_initial = euclid_init,
# additive = "afvArea"
# )
# ssn_init
# ssn_rand <- ssn_lm(
# formula = Summer_mn ~ ELEV_DEM + AREAWTMAP,
# ssn.object = mf04p,
# tailup_type = "exponential",
# taildown_type = "spherical",
# euclid_type = "gaussian",
# additive = "afvArea",
# random = ~ as.factor(netID)
# )
# ssn_rand
# ssn_part <- ssn_lm(
# formula = Summer_mn ~ ELEV_DEM + AREAWTMAP,
# ssn.object = mf04p,
# tailup_type = "exponential",
# taildown_type = "spherical",
# euclid_type = "gaussian",
# additive = "afvArea",
# partition_factor = ~ as.factor(netID)
# )
# ssn_part
# ggplot() +
# geom_sf(data = mf04p$edges) +
# geom_sf(data = mf04p$obs, aes(color = C16), size = 2) +
# scale_color_viridis_c(option = "H") +
# theme_bw()
# ssn_pois <- ssn_glm(
# formula = C16 ~ ELEV_DEM + AREAWTMAP,
# family = "poisson",
# ssn.object = mf04p,
# tailup_type = "epa",
# taildown_type = "mariah",
# additive = "afvArea"
# )
# summary(ssn_pois)
# ssn_nb <- ssn_glm(
# formula = C16 ~ ELEV_DEM + AREAWTMAP,
# family = "nbinomial",
# ssn.object = mf04p,
# tailup_type = "epa",
# taildown_type = "mariah",
# additive = "afvArea"
# )
# loocv_pois <- loocv(ssn_pois)
# loocv_pois$RMSPE
# loocv_nb <- loocv(ssn_nb)
# loocv_nb$RMSPE
# tu_params <- tailup_params("exponential", de = 0.4, range = 1e5)
# td_params <- taildown_params("spherical", de = 0.1, range = 1e6)
# euc_params <- euclid_params("gaussian", de = 0.2, range = 1e3)
# nug_params <- nugget_params("nugget", nugget = 0.1)
# set.seed(2)
# sims <- ssn_simulate(
# family = "gaussian",
# ssn.object = mf04p,
# network = "obs",
# additive = "afvArea",
# tailup_params = tu_params,
# taildown_params = td_params,
# euclid_params = euc_params,
# nugget_params = nug_params,
# mean = 0,
# samples = 1
# )
# head(sims)
# sims <- ssn_simulate(
# family = "binomial",
# ssn.object = mf04p,
# network = "obs",
# additive = "afvArea",
# tailup_params = tu_params,
# taildown_params = td_params,
# euclid_params = euc_params,
# nugget_params = nug_params,
# mean = 0,
# samples = 2
# )
# head(sims)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.