Nothing
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(
temp_path,
predpts = c("pred1km"),
overwrite = TRUE
)
test_that("covariance matrix functions run", {
################
##### create distance object
################
initial_object_val <- get_initial_object(
tailup_type = "exponential",
taildown_type = "exponential",
euclid_type = "exponential",
nugget_type = "nugget",
tailup_initial = NULL,
taildown_initial = NULL,
euclid_initial = NULL,
nugget_initial = NULL
)
object <- get_dist_object(
ssn.object = mf04p,
initial_object = initial_object_val,
additive = "afvArea",
anisotropy = FALSE
)
object_anis <- get_dist_object(
ssn.object = mf04p,
initial_object = initial_object_val,
additive = "afvArea",
anisotropy = TRUE
)
################
##### tailup
################
tailup_covs <- c("linear", "spherical", "exponential",
"mariah", "epa", "none")
lapply(tailup_covs, function(x) {
if (x == "none") {
params <- tailup_params(x)
expect_equal(cov_matrix(params, object), 0)
} else {
params <- tailup_params(x, de = 1, range = 1)
expect_equal(dim(cov_matrix(params, object)), c(45, 45))
}
})
################
##### taildown
################
taildown_covs <- c("linear", "spherical", "exponential",
"mariah", "epa", "none")
lapply(taildown_covs, function(x) {
if (x == "none") {
params <- taildown_params(x)
expect_equal(cov_matrix(params, object), 0)
} else {
params <- taildown_params(x, de = 1, range = 1)
expect_equal(dim(cov_matrix(params, object)), c(45, 45))
}
})
################
##### euclid
################
euclid_covs <- c("exponential", "spherical", "gaussian", "cubic",
"pentaspherical", "cosine", "wave", "jbessel", "gravity",
"rquad", "magnetic", "none")
lapply(euclid_covs, function(x) {
if (x == "none") {
params <- euclid_params(x)
expect_equal(cov_matrix(params, object), 0)
} else if (x == "spherical") {
params <- euclid_params(x, de = 1, range = 1, rotate = 0.5, scale = 0.5)
expect_equal(dim(cov_matrix(params, object_anis, anisotropy = TRUE)), c(45, 45))
} else {
params <- euclid_params(x, de = 1, range = 1, rotate = 0, scale = 1)
expect_equal(dim(cov_matrix(params, object, anisotropy = FALSE)), c(45, 45))
}
})
################
##### nugget
################
nugget_covs <- c("nugget", "none")
lapply(nugget_covs, function(x) {
if (x == "none") {
params <- nugget_params(x)
expect_equal(dim(cov_matrix(params, object, de_scale = 1)), c(45, 45))
} else {
params <- nugget_params(x, nugget = 1)
expect_equal(dim(cov_matrix(params, object, de_scale = 1)), c(45, 45))
}
})
})
test_that("covariance vector functions run", {
ssn_mod <- ssn_lm(Summer_mn ~ ELEV_DEM, mf04p,
tailup_type = "exponential", taildown_type = "exponential",
euclid_type = "exponential", anisotropy = FALSE,
random = ~ as.factor(netID), additive = "afvArea",
estmethod = "ml", partition_factor = ~ as.factor(netID))
ssn_mod_anis <- ssn_lm(Summer_mn ~ ELEV_DEM, mf04p,
euclid_type = "exponential", anisotropy = TRUE)
################
##### create distance object
################
initial_object_val <- get_initial_object(
tailup_type = "exponential",
taildown_type = "exponential",
euclid_type = "exponential",
nugget_type = "nugget",
tailup_initial = NULL,
taildown_initial = NULL,
euclid_initial = NULL,
nugget_initial = NULL
)
object <- get_dist_pred_object(
object = ssn_mod,
newdata_name = "pred1km",
initial_object = initial_object_val
)
initial_object_val <- get_initial_object(
tailup_type = "none",
taildown_type = "none",
euclid_type = "exponential",
nugget_type = "nugget",
tailup_initial = NULL,
taildown_initial = NULL,
euclid_initial = NULL,
nugget_initial = NULL
)
object_anis <- get_dist_pred_object(
object = ssn_mod_anis,
newdata_name = "pred1km",
initial_object = initial_object_val
)
################
##### tailup
################
tailup_covs <- c("linear", "spherical", "exponential",
"mariah", "epa", "none")
lapply(tailup_covs, function(x) {
if (x == "none") {
params <- tailup_params(x)
expect_equal(cov_vector(params, object), 0)
} else {
params <- tailup_params(x, de = 1, range = 1)
expect_equal(dim(cov_vector(params, object)), c(175, 45))
}
})
################
##### taildown
################
taildown_covs <- c("linear", "spherical", "exponential",
"mariah", "epa", "none")
lapply(taildown_covs, function(x) {
if (x == "none") {
params <- taildown_params(x)
expect_equal(cov_vector(params, object), 0)
} else {
params <- taildown_params(x, de = 1, range = 1)
expect_equal(dim(cov_vector(params, object)), c(175, 45))
}
})
################
##### euclid
################
euclid_covs <- c("exponential", "spherical", "gaussian", "cubic",
"pentaspherical", "cosine", "wave", "jbessel", "gravity",
"rquad", "magnetic", "none")
lapply(euclid_covs, function(x) {
if (x == "none") {
params <- euclid_params(x)
expect_equal(cov_vector(params, object), 0)
} else if (x == "spherical") {
params <- euclid_params(x, de = 1, range = 1, rotate = 0.5, scale = 0.5)
expect_equal(dim(cov_vector(params, object_anis, anisotropy = TRUE)), c(175, 45))
} else {
params <- euclid_params(x, de = 1, range = 1, rotate = 0, scale = 1)
expect_equal(dim(cov_vector(params, object, anisotropy = FALSE)), c(175, 45))
}
})
################
##### prediction
################
expect_no_error(predict(ssn_mod, "pred1km", interval = "prediction", level = 0.9))
expect_no_error(predict(ssn_mod_anis, "pred1km"))
})
test_that("initial objects", {
tu <- tailup_initial("exponential", de = 1, range = 1, known = "given")
td <- taildown_initial("exponential", de = 1, range = 1, known = c("de", "range"))
eu <- euclid_initial("exponential", de = 1, range = 1,
rotate = 0, scale = 1, known = "given")
nu <- nugget_initial("nugget", 1, known = "nugget")
disp <- dispersion_initial("Gamma", dispersion = 1, known = "given")
ssn_mod <- ssn_lm(Summer_mn ~ ELEV_DEM, mf04p,
tailup_initial = tu, taildown_initial = td,
euclid_initial = eu, nugget_initial = nu,
additive = "afvArea")
expect_s3_class(ssn_mod, "ssn_lm")
ssn_mod <- ssn_glm(Summer_mn ~ ELEV_DEM, mf04p,
tailup_initial = tu, taildown_initial = td,
euclid_initial = eu, nugget_initial = nu,
dispersion_initial = disp,
additive = "afvArea")
expect_s3_class(ssn_mod, "ssn_glm")
})
test_that("print an ssn", {
expect_output(print(mf04p))
expect_output(print(summary(mf04p)))
expect_output(print(names(mf04p)))
})
test_that("extra test fits", {
ssn_mod <- ssn_glm(Summer_mn > 11 ~ ELEV_DEM, mf04p, family = "binomial",
tailup_type = "exponential", additive = "afvArea",
estmethod = "ml")
expect_s3_class(ssn_mod, "ssn_glm")
ssn_mod <- ssn_glm(round(Summer_mn) ~ ELEV_DEM, mf04p, family = "poisson",
taildown_type = "exponential")
expect_s3_class(ssn_mod, "ssn_glm")
ssn_mod <- ssn_glm(round(Summer_mn) ~ ELEV_DEM, mf04p, family = "nbinomial",
euclid_type = "exponential")
expect_s3_class(ssn_mod, "ssn_glm")
ssn_mod <- ssn_glm(Summer_mn ~ ELEV_DEM, mf04p, family = "inverse.gaussian",
tailup_type = "exponential", additive = "afvArea")
expect_s3_class(ssn_mod, "ssn_glm")
ssn_mod <- ssn_glm(ratio ~ ELEV_DEM, mf04p, family = "beta",
taildown_type = "exponential")
expect_s3_class(ssn_mod, "ssn_glm")
ssn_mod <- ssn_lm(Summer_mn ~ ELEV_DEM, mf04p, family = "binomial",
tailup_type = "exponential", additive = "afvArea",
random = ~ as.factor(netID))
expect_output(print(ssn_mod))
expect_output(print(summary(ssn_mod)))
expect_type(fitted(ssn_mod, type = "randcov"), "list")
ssn_mod <- ssn_glm(Summer_mn ~ ELEV_DEM, mf04p, family = "Gamma",
random = ~ as.factor(netID))
expect_output(print(ssn_mod))
expect_output(print(summary(ssn_mod)))
expect_type(fitted(ssn_mod, type = "randcov"), "list")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.