Nothing
test_that("covariance matrix functions run", {
################
##### create distance object
################
initial_object_val <- get_initial_object(
tailup_type = "exponential",
taildown_type = "exponential",
euclid_type = "exponential",
nugget_type = "nugget",
tailup_initial = NULL,
taildown_initial = NULL,
euclid_initial = NULL,
nugget_initial = NULL
)
object <- get_dist_object(
ssn.object = mf04p,
initial_object = initial_object_val,
additive = "afvArea",
anisotropy = FALSE
)
object_anis <- get_dist_object(
ssn.object = mf04p,
initial_object = initial_object_val,
additive = "afvArea",
anisotropy = TRUE
)
n_obs <- NROW(mf04p$obs)
n_obs_dim <- c(n_obs, n_obs)
################
##### tailup
################
tailup_covs <- c(
"linear", "spherical", "exponential",
"mariah", "epa", "gaussian", "none"
)
lapply(tailup_covs, function(x) {
if (x == "none") {
params <- tailup_params(x)
covmx <- cov_matrix(params, object)
expect_equal(covmx, 0)
} else {
de <- 1
params <- tailup_params(x, de = de, range = 1)
covmx <- cov_matrix(params, object)
expect_equal(dim(covmx), n_obs_dim)
expect_equal(unique(diag(covmx)), de) # de value is overall variance
}
})
################
##### taildown
################
taildown_covs <- c(
"linear", "spherical", "exponential",
"mariah", "epa", "gaussian", "none"
)
lapply(taildown_covs, function(x) {
if (x == "none") {
params <- taildown_params(x)
covmx <- cov_matrix(params, object)
expect_equal(covmx, 0)
} else {
de <- 1
params <- taildown_params(x, de = de, range = 1)
covmx <- cov_matrix(params, object)
expect_equal(dim(covmx), n_obs_dim)
expect_equal(unique(diag(covmx)), de)
}
})
################
##### euclid
################
euclid_covs <- c(
"exponential", "spherical", "gaussian", "cubic",
"pentaspherical", "cosine", "wave", "jbessel", "gravity",
"rquad", "magnetic", "none"
)
lapply(euclid_covs, function(x) {
if (x == "none") {
params <- euclid_params(x)
covmx <- cov_matrix(params, object)
expect_equal(covmx, 0)
} else if (x == "spherical") {
de <- 1
params <- euclid_params(x, de = de, range = 1, rotate = 0.5, scale = 0.5)
covmx <- cov_matrix(params, object_anis, anisotropy = TRUE)
expect_equal(dim(covmx), n_obs_dim)
expect_equal(unique(diag(covmx)), de)
} else {
de <- 1
params <- euclid_params(x, de = 1, range = 1, rotate = 0, scale = 1)
covmx <- cov_matrix(params, object, anisotropy = FALSE)
expect_equal(dim(covmx), n_obs_dim)
expect_equal(unique(diag(covmx)), de)
}
})
################
##### nugget
################
nugget_covs <- c("nugget", "none")
lapply(nugget_covs, function(x) {
if (x == "none") {
params <- nugget_params(x)
covmx <- cov_matrix(params, object, de_scale = 1)
expect_equal(dim(covmx), n_obs_dim)
} else {
params <- nugget_params(x, nugget = 1)
covmx <- cov_matrix(params, object, de_scale = 1)
expect_equal(dim(covmx), n_obs_dim)
}
})
})
test_that("covariance vector functions run", {
ssn_mod <- ssn_lm(Summer_mn ~ ELEV_DEM, mf04p,
tailup_type = "exponential", taildown_type = "exponential",
euclid_type = "exponential", anisotropy = FALSE,
random = ~ as.factor(netID), additive = "afvArea",
estmethod = "ml", partition_factor = ~ as.factor(netID)
)
ssn_mod_anis <- ssn_lm(Summer_mn ~ ELEV_DEM, mf04p,
euclid_type = "exponential", anisotropy = TRUE
)
################
##### create distance object
################
initial_object_val <- get_initial_object(
tailup_type = "exponential",
taildown_type = "exponential",
euclid_type = "exponential",
nugget_type = "nugget",
tailup_initial = NULL,
taildown_initial = NULL,
euclid_initial = NULL,
nugget_initial = NULL
)
object <- get_dist_pred_object(
object = ssn_mod,
newdata_name = "pred1km",
initial_object = initial_object_val
)
initial_object_val <- get_initial_object(
tailup_type = "none",
taildown_type = "none",
euclid_type = "exponential",
nugget_type = "nugget",
tailup_initial = NULL,
taildown_initial = NULL,
euclid_initial = NULL,
nugget_initial = NULL
)
object_anis <- get_dist_pred_object(
object = ssn_mod_anis,
newdata_name = "pred1km",
initial_object = initial_object_val
)
n_obs <- NROW(ssn_mod$ssn.object$obs)
n_pred <- NROW(ssn_mod$ssn.object$preds[["pred1km"]])
n_dim <- c(n_pred, n_obs)
################
##### tailup
################
tailup_covs <- c(
"linear", "spherical", "exponential",
"mariah", "epa", "gaussian", "none"
)
lapply(tailup_covs, function(x) {
if (x == "none") {
params <- tailup_params(x)
covv <- cov_vector(params, object)
expect_equal(covv, 0)
} else {
de <- 1
params <- tailup_params(x, de = de, range = 1)
covv <- cov_vector(params, object)
expect_equal(dim(covv), n_dim)
}
})
################
##### taildown
################
taildown_covs <- c(
"linear", "spherical", "exponential",
"mariah", "epa", "gaussian", "none"
)
lapply(taildown_covs, function(x) {
if (x == "none") {
params <- taildown_params(x)
covv <- cov_vector(params, object)
expect_equal(covv, 0)
} else {
de <- 1
params <- taildown_params(x, de = de, range = 1)
covv <- cov_vector(params, object)
expect_equal(dim(covv), n_dim)
}
})
################
##### euclid
################
euclid_covs <- c(
"exponential", "spherical", "gaussian", "cubic",
"pentaspherical", "cosine", "wave", "jbessel", "gravity",
"rquad", "magnetic", "none"
)
lapply(euclid_covs, function(x) {
if (x == "none") {
params <- euclid_params(x)
covv <- cov_vector(params, object)
expect_equal(covv, 0)
} else if (x == "spherical") {
de <- 1
params <- euclid_params(x, de = 1, range = 1, rotate = 0.5, scale = 0.5)
covv <- cov_vector(params, object_anis, anisotropy = TRUE)
expect_equal(dim(covv), n_dim)
} else {
de <- 1
params <- euclid_params(x, de = 1, range = 1, rotate = 0, scale = 1)
covv <- cov_vector(params, object, anisotropy = FALSE)
expect_equal(dim(covv), n_dim)
}
})
################
##### prediction
################
preds <- predict(ssn_mod, "pred1km", interval = "prediction", level = 0.9)
expect_equal(dim(preds), c(n_pred, 3))
expect_identical(colnames(preds), c("fit", "lwr", "upr"))
preds_anis <- predict(ssn_mod_anis, "pred1km")
expect_equal(length(preds_anis), n_pred)
})
test_that("initial objects", {
de <- 1
range <- 1
nugget <- 1
dispersion <- 1
tu <- tailup_initial("exponential", de = de, range = range, known = "given")
td <- taildown_initial("exponential", de = de, range = range, known = c("de", "range"))
eu <- euclid_initial("exponential",
de = de, range = range,
rotate = 0, scale = 1, known = "given"
)
nu <- nugget_initial("nugget", nugget, known = "nugget")
disp <- dispersion_initial("Gamma", dispersion = dispersion, known = "given")
ssn_mod <- ssn_lm(Summer_mn ~ ELEV_DEM, mf04p,
tailup_initial = tu, taildown_initial = td,
euclid_initial = eu, nugget_initial = nu,
additive = "afvArea"
)
expect_equal(as.vector(coef(ssn_mod, "tailup")), c(de, range))
expect_equal(as.vector(coef(ssn_mod, "taildown")), c(de, range))
expect_equal(as.vector(coef(ssn_mod, "euclid")), c(de, range, 0, 1))
expect_equal(as.vector(coef(ssn_mod, "nugget")), c(de))
ssn_mod <- ssn_glm(Summer_mn ~ ELEV_DEM, mf04p,
tailup_initial = tu, taildown_initial = td,
euclid_initial = eu, nugget_initial = nu,
dispersion_initial = disp,
additive = "afvArea"
)
expect_equal(as.vector(coef(ssn_mod, "tailup")), c(de, range))
expect_equal(as.vector(coef(ssn_mod, "taildown")), c(de, range))
expect_equal(as.vector(coef(ssn_mod, "euclid")), c(de, range, 0, 1))
expect_equal(as.vector(coef(ssn_mod, "nugget")), c(de))
expect_equal(as.vector(coef(ssn_mod, "dispersion")), c(dispersion))
})
test_that("print an ssn", {
expect_output(print(mf04p))
expect_output(print(summary(mf04p)))
expect_output(print(names(mf04p)))
expect_output(print(ssn_names(mf04p)))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.