Nothing
test_that("generics work ssn_glm point data", {
# Copy the mf04p .ssn data to a local directory and read it into R
# When modeling with your .ssn object, you will load it using the relevant
# path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(
temp_path,
predpts = c("pred1km", "CapeHorn", "Knapp"),
overwrite = TRUE
)
ssn_mod1 <- ssn_glm(Summer_mn ~ ELEV_DEM,
family = "Gamma", mf04p, tailup_type = "exponential",
taildown_type = "exponential", euclid_type = "exponential",
nugget_type = "nugget", additive = "afvArea"
)
ssn_mod2 <- ssn_glm(Summer_mn ~ ELEV_DEM,
family = Gamma, mf04p, tailup_type = "exponential",
taildown_type = "none", euclid_type = "none",
nugget_type = "nugget", additive = "afvArea"
)
# AIC
expect_vector(AIC(ssn_mod1))
expect_s3_class(AIC(ssn_mod1, ssn_mod2), "data.frame") # turn reml fixed effects warning off
# anova
expect_s3_class(anova(ssn_mod1), "data.frame")
expect_s3_class(anova(ssn_mod1), "anova.ssn_glm")
expect_s3_class(tidy(anova(ssn_mod1)), "data.frame")
expect_s3_class(anova(ssn_mod1, ssn_mod2), "data.frame")
expect_s3_class(anova(ssn_mod1, ssn_mod2), "anova.ssn_glm")
expect_s3_class(tidy(anova(ssn_mod1, ssn_mod2)), "data.frame")
# augment
expect_s3_class(augment(ssn_mod1), "data.frame")
expect_s3_class(augment(ssn_mod1, newdata = "pred1km"), "data.frame")
# coef
expect_vector(coef(ssn_mod1))
expect_s3_class(coef(ssn_mod1, type = "tailup"), "tailup_exponential")
expect_s3_class(coef(ssn_mod1, type = "euclid"), "euclid_exponential")
expect_type(coef(ssn_mod1, type = "ssn"), "list")
expect_null(coef(ssn_mod1, type = "randcov"))
expect_vector(coefficients(ssn_mod1))
expect_s3_class(coefficients(ssn_mod1, type = "taildown"), "taildown_exponential")
expect_s3_class(coef(ssn_mod1, type = "nugget"), "nugget_nugget")
expect_null(coefficients(ssn_mod1, type = "randcov"))
# confint
expect_true(inherits(confint(ssn_mod1), "matrix"))
expect_true(inherits(confint(ssn_mod1, parm = c("x"), level = 0.9), "matrix"))
# cooks.distance
expect_vector(cooks.distance(ssn_mod1))
# covmatrix
expect_true(inherits(covmatrix(ssn_mod1), "matrix"))
expect_true(inherits(covmatrix(ssn_mod1, "pred1km"), "matrix"))
expect_true(inherits(covmatrix(ssn_mod1, "pred1km", type = "obs.pred"), "matrix"))
expect_true(inherits(covmatrix(ssn_mod1, "pred1km", cov_type = "pred.pred"), "matrix"))
# deviance
expect_vector(deviance(ssn_mod1))
# fitted
expect_vector(fitted(ssn_mod1))
expect_vector(fitted(ssn_mod1, type = "link"))
expect_vector(fitted(ssn_mod1, type = "tailup"))
expect_vector(fitted(ssn_mod1, type = "taildown"))
expect_null(fitted(ssn_mod1, type = "randcov"))
expect_vector(fitted.values(ssn_mod1))
expect_vector(fitted.values(ssn_mod1, type = "link"))
expect_vector(fitted.values(ssn_mod1, type = "euclid"))
expect_vector(fitted.values(ssn_mod1, type = "nugget"))
expect_null(fitted.values(ssn_mod1, type = "randcov"))
# formula
expect_type(formula(ssn_mod1), "language")
# getCall
expect_type(getCall(ssn_mod1), "language")
# glance
expect_s3_class(glance(ssn_mod1), "data.frame")
# glances
expect_s3_class(glances(ssn_mod1), "data.frame")
expect_s3_class(glances(ssn_mod1, ssn_mod2), "data.frame")
# hatvalues
expect_vector(hatvalues(ssn_mod1))
# influence
expect_s3_class(influence(ssn_mod1), "data.frame")
# labels
expect_type(labels(ssn_mod1), "character")
# logLik
expect_vector(logLik(ssn_mod1))
# loocv
expect_s3_class(loocv(ssn_mod1), "data.frame")
expect_type(loocv(ssn_mod1, cv_predict = TRUE, se.fit = TRUE), "list")
# model.frame
expect_s3_class(model.frame(ssn_mod1), "data.frame")
# model.matrix
expect_true(inherits(model.matrix(ssn_mod1), "matrix"))
# model.offset
expect_null(model.offset(model.frame(ssn_mod1)))
# model.response
expect_vector(model.response(model.frame(ssn_mod1)))
# plot
expect_invisible(plot(ssn_mod1, which = 1))
expect_invisible(plot(ssn_mod1, which = 2))
expect_invisible(plot(ssn_mod1, which = 3))
expect_invisible(plot(ssn_mod1, which = 4))
expect_invisible(plot(ssn_mod1, which = 5))
expect_invisible(plot(ssn_mod1, which = 6))
# predict
expect_vector(predict(ssn_mod1, newdata = "pred1km"))
expect_type(predict(ssn_mod1, newdata = "pred1km", se.fit = TRUE), "list")
expect_type(predict(ssn_mod1, newdata = "pred1km", interval = "prediction", se.fit = TRUE), "list")
expect_true(inherits(predict(ssn_mod1, newdata = "pred1km", interval = "confidence", level = 0.9), "matrix"))
# print
expect_output(print(ssn_mod1))
expect_output(print(summary(ssn_mod1)))
expect_output(print(anova(ssn_mod1)))
# pseudoR2
expect_vector(pseudoR2(ssn_mod1))
# residuals
expect_vector(residuals(ssn_mod1))
expect_vector(residuals(ssn_mod1, type = "pearson"))
expect_vector(residuals(ssn_mod1, type = "standardized"))
expect_vector(resid(ssn_mod1))
expect_vector(resid(ssn_mod1, type = "pearson"))
expect_vector(resid(ssn_mod1, type = "standardized"))
expect_vector(rstandard(ssn_mod1))
# summary
expect_type(summary(ssn_mod1), "list")
# terms
expect_type(terms(ssn_mod1), "language")
# tidy
expect_s3_class(tidy(ssn_mod1), "data.frame")
expect_s3_class(tidy(ssn_mod1, conf.int = TRUE, level = 0.9), "data.frame")
expect_s3_class(tidy(ssn_mod1, effects = "ssn"), "data.frame")
expect_s3_class(tidy(ssn_mod1, effects = "tailup"), "data.frame")
expect_s3_class(tidy(ssn_mod1, effects = "taildown"), "data.frame")
expect_s3_class(tidy(ssn_mod1, effects = "euclid"), "data.frame")
expect_s3_class(tidy(ssn_mod1, effects = "nugget"), "data.frame")
# update
expect_s3_class(update(ssn_mod2), "ssn_glm")
# varcomp
expect_s3_class(varcomp(ssn_mod1), "data.frame")
# vcov
expect_true(inherits(vcov(ssn_mod1), "matrix"))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.