Nothing
# Copy the mf04p .ssn data to a local directory and read it into R
# When modeling with your .ssn object, you will load it using the relevant
# path to the .ssn data on your machine
copy_lsn_to_temp()
temp_path <- paste0(tempdir(), "/MiddleFork04.ssn")
mf04p <- ssn_import(
temp_path,
predpts = c("pred1km", "CapeHorn", "Knapp"),
overwrite = TRUE
)
# fit an example model
ssn_mod <- ssn_lm(Summer_mn ~ ELEV_DEM, mf04p, tailup_type = "exponential", additive = "afvArea")
initial_object_val <- get_initial_object(
tailup_type = "exponential",
taildown_type = "exponential",
euclid_type = "exponential",
nugget_type = "nugget",
tailup_initial = NULL,
taildown_initial = NULL,
euclid_initial = NULL,
nugget_initial = NULL
)
################################################################################
############################ check_optim_method
################################################################################
test_that("check optim method works", {
optim_dotlist <- get_optim_dotlist()
optim_par <- c(a = 1, b = 2)
optim_dotlist_val <- check_optim_method(optim_par, optim_dotlist)
expect_equal(optim_dotlist_val$method, optim_dotlist$method)
expect_equal(optim_dotlist_val$lower, optim_dotlist$lower)
expect_equal(optim_dotlist_val$upper, optim_dotlist$upper)
optim_par <- c(a = 1)
optim_dotlist_val <- check_optim_method(optim_par, optim_dotlist)
expect_equal(optim_dotlist_val$method, "Brent")
expect_equal(optim_dotlist_val$lower, -50)
expect_equal(optim_dotlist_val$upper, 50)
})
################################################################################
############################ params, cov_matrix, cov_vector work
################################################################################
test_that("params, cov_matrix, cov_vector work", {
tailup_par <- tailup_params("exponential", 1, 1)
taildown_par <- taildown_params("exponential", 1, 1)
euclid_par <- euclid_params("exponential", 1, 1, 0, 1)
nugget_par <- nugget_params("nugget", 0.1)
# create dist object
dist_object <- get_dist_object(
ssn.object = mf04p,
initial_object = initial_object_val,
additive = "afvArea",
anisotropy = FALSE
)
n_obs <- NROW(mf04p$obs)
n_obs_dim <- c(n_obs, n_obs)
expect_equal(dim(cov_matrix(tailup_par, dist_object)), n_obs_dim)
expect_equal(dim(cov_matrix(taildown_par, dist_object)), n_obs_dim)
expect_equal(dim(cov_matrix(euclid_par, dist_object, anisotropy = FALSE)), n_obs_dim)
expect_equal(dim(cov_matrix(nugget_par, dist_object, de_scale = 0)), n_obs_dim)
# create distance object
dist_pred_object <- get_dist_pred_object(
object = ssn_mod,
newdata_name = "pred1km",
initial_object = initial_object_val
)
n_obs <- NROW(ssn_mod$ssn.object$obs)
n_pred <- NROW(ssn_mod$ssn.object$preds[["pred1km"]])
n_dim <- c(n_pred, n_obs)
expect_equal(dim(cov_vector(tailup_par, dist_pred_object)), n_dim)
expect_equal(dim(cov_vector(taildown_par, dist_pred_object)), n_dim)
expect_equal(dim(cov_vector(euclid_par, dist_pred_object, anisotropy = FALSE)), n_dim)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.