Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
# install.packages("STICr") # if needed: install package from CRAN
# devtools::install_github("HEAL-KGS/STICr") # if needed: install dev version from GitHub
library(STICr)
## ----tidy-data----------------------------------------------------------------
# use tidy_hobo_data to load and tidy your raw HOBO data
df_tidy <-
tidy_hobo_data(
infile = "https://samzipper.com/data/raw_hobo_data.csv",
outfile = FALSE, convert_utc = TRUE
)
head(df_tidy)
## ----load-calibration-data----------------------------------------------------
# inspect the example calibration standard data provided with the package
data(calibration_standard_data)
head(calibration_standard_data)
## ----get-calibration----------------------------------------------------------
# get calibration
lm_calibration <- get_calibration(calibration_standard_data)
summary(lm_calibration)
## ----apply-calibration--------------------------------------------------------
# apply calibration
df_calibrated <- apply_calibration(
stic_data = df_tidy,
calibration = lm_calibration,
outside_std_range_flag = T
)
head(df_calibrated)
## ----plot-calibrated-data, fig.width = 6, fig.height = 4----------------------
# plot SpC as a timeseries and histogram
plot(df_calibrated$datetime, df_calibrated$SpC,
xlab = "Datetime", ylab = "SpC",
main = "Specific Conductivity Timeseries"
)
hist(df_calibrated$SpC,
xlab = "Specific Conductivity", breaks = seq(0, 1025, 25),
main = "Specific Conductivity Distribution"
)
## ----classify-data------------------------------------------------------------
# classify data
df_classified <- classify_wetdry(
stic_data = df_calibrated,
classify_var = "SpC",
threshold = 100,
method = "absolute"
)
head(df_classified)
## ----plot-classified-data, fig.width = 6, fig.height = 4----------------------
# plot SpC through time, colored by wetdry
plot(df_classified$datetime, df_classified$SpC,
col = as.factor(df_classified$wetdry),
pch = 16,
lty = 2,
xlab = "Datetime",
ylab = "Specific conductivity"
)
legend("topright", c("dry", "wet"),
fill = c("black", "red"), cex = 0.75
)
## ----qaqc-data----------------------------------------------------------------
# apply qaqc function
df_qaqc <-
qaqc_stic_data(
stic_data = df_classified,
spc_neg_correction = T,
inspect_deviation = T,
deviation_size = 4,
window_size = 96
)
head(df_qaqc)
table(df_qaqc$QAQC)
## ----validate-data, fig.width = 6, fig.height = 6-----------------------------
# load and inspect sample field observation data
head(field_obs)
# use validate_stic_data to compile closest-in-time STIC reading for each field observation
stic_validation <-
validate_stic_data(
stic_data = classified_df,
field_observations = field_obs,
max_time_diff = 30,
join_cols = NULL,
get_SpC = TRUE,
get_QAQC = FALSE
)
# we can now compare the field observations and classified STIC data in the table
head(stic_validation)
# calculate percent classification accuracy
sum(stic_validation$wetdry_obs == stic_validation$wetdry_STIC) / length(stic_validation$wetdry_STIC)
# compare SpC
plot(stic_validation$SpC_obs, stic_validation$SpC_STIC,
xlab = "Observed SpC", ylab = "STIC SpC"
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.