Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
eval = FALSE
)
## ----eval = FALSE-------------------------------------------------------------
# # Install from GitHub
# install.packages("devtools")
# devtools::install_github("tacazares/SeedMatchR")
## ----include = FALSE----------------------------------------------------------
# # Import library
# library(SeedMatchR)
# library(msa)
# library(GenomicFeatures)
## -----------------------------------------------------------------------------
# # siRNA sequence of interest targeting a 23 bp region of the Ttr gene
# guide.seq = "UUAUAGAGCAAGAACACUGUUUU"
## ----echo = T, results = 'hide', message=FALSE, warning=FALSE, error=FALSE----
# # Load the species specific annotation database object
# anno.db <- load_species_anno_db("rat")
## -----------------------------------------------------------------------------
# features = get_feature_seqs(anno.db$tx.db, anno.db$dna, feature.type = "3UTR")
## ----echo = T, results = 'hide', message=FALSE, warning=FALSE, error=FALSE----
# get_example_data("sirna")
## -----------------------------------------------------------------------------
# sirna.data = load_example_data("sirna")
## -----------------------------------------------------------------------------
# res <- sirna.data$Schlegel_2022_Ttr_D1_30mkg
## -----------------------------------------------------------------------------
# # Dimensions before filtering
#
# dim(res) # [1] 32883 6
#
# # Filter DESeq2 results for SeedMatchR
# res = filter_deseq(res, fdr.cutoff=1, fc.cutoff=0, rm.na.log2fc = TRUE)
#
# # Dimensions after filtering
# dim(res) # [1] 13582 8
## ----fig.height=5, fig.width=10, out.retina=1---------------------------------
# # Plot the seed sequence options for the siRNA of interest
# avail.seed.plot = plot_seeds(guide.seq)
#
# avail.seed.plot
## -----------------------------------------------------------------------------
# # Get the seed sequence information for the seed of interest
# seed = get_seed(guide.seq, "mer7m8")
#
# seed
## -----------------------------------------------------------------------------
# res = SeedMatchR(res,
# anno.db$gtf,
# features$seqs,
# guide.seq)
#
# head(res)
## -----------------------------------------------------------------------------
# for (seed in c("mer8", "mer6", "mer7A1")){
# res <- SeedMatchR(res,
# anno.db$gtf,
# features$seqs,
# guide.seq,
# seed.name = seed)
# }
#
# head(res)
## -----------------------------------------------------------------------------
# for (indel.bool in c(TRUE, FALSE)){
# for (mm in c(0,1,2)){
# for (seed in c("mer7m8", "mer8", "mer6", "mer7A1")){
# res <- SeedMatchR(res,
# anno.db$gtf,
# features$seqs,
# guide.seq,
# seed.name = seed,
# col.name = paste0(seed, ".", "mm", mm, "_indel", indel.bool),
# mismatches = mm,
# indels = indel.bool)
# }
# }
# }
#
# head(res)
## ----fig.height=5, fig.width=10, out.retina=1---------------------------------
# # Gene set 1
# mer7m8.list = res$gene_id[res$mer7m8.mm0_indelFALSE >= 1 & res$mer8.mm0_indelFALSE ==0]
#
# # Gene set 2
# mer8.list = res$gene_id[res$mer8.mm0_indelFALSE >= 1]
#
# background.list = res$gene_id[res$mer7m8.mm0_indelFALSE == 0 & res$mer8.mm0_indelFALSE == 0]
#
# ecdf.results = deseq_fc_ecdf(res,
# list("Background" = background.list, "mer8" = mer8.list, "mer7m8" = mer7m8.list),
# stats.test = "KS",
# factor.order = c("Background", "mer8", "mer7m8"),
# null.name = "Background",
# target.name = "mer8",
# alternative = "greater")
#
# ecdf.results$plot
## ----fig.height=5, fig.width=10, out.retina=1---------------------------------
# # Group transcripts by gene
# sequences <- transcriptsBy(anno.db$tx.db, by="gene")
#
# # Extract promoter sequences from tx.db object
# prom.seq = getPromoterSeq(sequences,
# anno.db$dna,
# upstream=2000,
# downstream=100)
#
# # perform a seed search of the promoter sequences. Set tx.id.col to F to use gene annotations
# res = SeedMatchR(res, anno.db$gtf, prom.seq@unlistData, guide.seq, tx.id.col = FALSE, col.name = "promoter.mer7m8")
#
# # Find the genes with matches
# promoterWseed = res$gene_id[res$promoter.mer7m8 >= 1]
#
# # Generate the background list of genes
# background.list = res$gene_id[!(res$gene_id %in% promoterWseed)]
#
# # Plot ecdf results for promoter matches with stats testing
# ecdf.results = deseq_fc_ecdf(res,
# title = "Ttr D1 30mkg",
# list("Background" = background.list,
# "Promoter w/ mer7m8" = promoterWseed),
# stats.test = "KS",
# factor.order = c("Background",
# "Promoter w/ mer7m8"),
# null.name = "Background",
# target.name = "Promoter w/ mer7m8",
# alternative = "less",
# palette = c("black", "#d35400"))
#
# ecdf.results$plot
#
## -----------------------------------------------------------------------------
# sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.