Nothing
#' Assumption-free bound
#'
#' `AFbound()` returns a list with the AF upper and lower bounds.
#'
#' @param whichEst Input string. Defining the causal estimand of interest.
#' Available options are as follows. (1) Relative risk in the total
#' population: "RR_tot", (2) Risk difference in the total population:
#' "RD_tot", (3) Relative risk in the subpopulation: "RR_sub", (4) Risk
#' difference in the subpopulation: "RD_sub".
#' @param outcome Input vector. A binary outcome variable. Either the data
#' vector (length>=3) or two conditional outcome probabilities with
#' P(Y=1|T=1,I_s=1) and P(Y=1|T=0,I_s=1) as first and second element.
#' @param treatment Input vector. A binary treatment variable. Either the data
#' vector (length>=3) or two conditional treatment probabilities with
#' P(T=1|I_s=1) and P(T=0|I_s=1) as first and second element.
#' @param selection Input vector or input scalar. A binary selection variable or
#' a selection probability. Can be omitted for subpopulation estimands.
#'
#' @return A list containing the upper and lower AF bounds.
#' @export
#'
#' @examples
#' # Example with selection indicator variable.
#' y = c(0, 0, 0, 0, 1, 1, 1, 1)
#' tr = c(0, 0, 1, 1, 0, 0, 1, 1)
#' sel = c(0, 1, 0, 1, 0, 1, 0, 1)
#' AFbound(whichEst = "RR_tot", outcome = y, treatment = tr, selection = sel)
#'
#' # Example with selection probability.
#' selprob = mean(sel)
#' AFbound(whichEst = "RR_tot", outcome = y[sel==1], treatment = tr[sel==1],
#' selection = selprob)
#'
#' # Example with simulated data.
#' n = 1000
#' tr = rbinom(n, 1, 0.5)
#' y = rbinom(n, 1, 0.2 + 0.05 * tr)
#' sel = rbinom(n, 1, 0.4 + 0.1 * tr + 0.3 * y)
#' AFbound(whichEst = "RD_tot", outcome = y, treatment = tr, selection = sel)
#'
#' @references Zetterstrom, Stina and Waernbaum, Ingeborg. "Selection bias and
#' multiple inclusion criteria in observational studies" Epidemiologic
#' Methods 11, no. 1 (2022): 20220108.
#'
#' Zetterstrom, Stina. "Bounds for selection bias using outcome
#' probabilities" Epidemiologic Methods 13, no. 1 (2024): 20230033
#'
AFbound <- function(whichEst, outcome, treatment, selection = NULL)
{
if(whichEst == "RR_tot" | whichEst == "RD_tot")
{
if(is.null(selection[1])){stop('The argument "selection" must be specified for total population estimands.')}
}
if(is.null(selection[1])){selection = 1} # Give arbitrary value in case of NULL.
# Calculate the GAF bound.
bound = calcGAFbound(whichEst, 1, 0, outcome, treatment, selection, "AF")
bound = round(bound, 2)
# Output.
heading = c("AF lower bound", "AF upper bound")
values = list(bound[1], bound[2])
returnDat = matrix(cbind(heading, values), ncol = 2)
return(returnDat)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.