Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(SelectionBias)
## ----eval = FALSE-------------------------------------------------------------
# # Seed.
# set.seed(158118)
#
# # Number of observations.
# nObs = 5000
#
# # The unmeasured variable, living area (V).
# urban = rbinom(nObs, 1, 0.85)
#
# # The treatment variable, zika.
# zika_prob = arm::invlogit(-6.2 + 1.75 * urban)
# zika = rbinom(nObs, 1, zika_prob)
#
# # The unmeasured variable, SES (U).
# SES = rbinom(nObs, 1, 0.5)
#
# # The outcome variable, microcephaly.
# mic_ceph_prob = arm::invlogit(-5.2 + 5 * zika - 1 * SES)
# mic_ceph = rbinom(nObs, 1, mic_ceph_prob)
#
# # The first selection variable, birth.
# birth_prob = arm::invlogit(1.2 - 4 * zika + 2 * SES)
# birth = rbinom(nObs, 1, birth_prob)
#
# # The second selection variable, hospital.
# hospital_prob = arm::invlogit(2.2 + 0.5 * urban - 2.75 * SES)
# hospital = rbinom(nObs, 1, hospital_prob)
#
# # The selection indicator.
# sel_ind = birth * hospital
## ----echo = FALSE-------------------------------------------------------------
zika_learner2 = zika_learner
zika_learner2$zika = ifelse(zika_learner2$zika==1, "Zika infected", "Not zika infected")
table1::label(zika_learner2$mic_ceph) = "Microcephaly"
table1::label(zika_learner2$urban) = "Living area"
table1::label(zika_learner2$SES) = "SES"
my.render.cont <- function(x) {
with(table1::stats.apply.rounding(table1::stats.default(x), digits=3, rounding.fn = table1::round_pad), c("",
"Mean "=sprintf("%s", MEAN)))
}
table1::table1(~ mic_ceph + urban + SES | zika, data=zika_learner2, render.continuous = my.render.cont,
caption = "Table 2. Proportions for the simulated dataset, by treatment status and overall.")
zika_learner2 = subset(zika_learner2,zika_learner2$birth!=0)
table1::label(zika_learner2$mic_ceph) = "Microcephaly"
table1::label(zika_learner2$urban) = "Living area"
table1::label(zika_learner2$SES) = "SES"
table1::table1(~ mic_ceph + urban + SES | zika, data=zika_learner2, render.continuous = my.render.cont,
caption = "Table 3. Proportions for the simulated dataset, by treatment status and overall, after the first selection.")
zika_learner2 = subset(zika_learner2,zika_learner2$sel_ind!=0)
table1::label(zika_learner2$mic_ceph) = "Microcephaly"
table1::label(zika_learner2$urban) = "Living area"
table1::label(zika_learner2$SES) = "SES"
table1::table1(~ mic_ceph + urban + SES | zika, data=zika_learner2, render.continuous = my.render.cont,
caption = "Table 4. Proportions for the simulated dataset, by treatment status and overall, after both selections.")
## ----eval = TRUE--------------------------------------------------------------
# SV bound
sensitivityparametersM(whichEst = "RR_tot",
whichBound = "SV",
Vval = matrix(c(1, 0, 0.85, 0.15), ncol = 2),
Uval = matrix(c(1, 0, 0.5, 0.5), ncol = 2),
Tcoef = c(-6.2, 1.75),
Ycoef = c(-5.2, 5.0, -1.0),
Scoef = matrix(c(1.2, 2.2, 0.0, 0.5,
2.0, -2.75, -4.0, 0.0),
ncol = 4),
Mmodel = "L",
pY1_T1_S1 = 0.286,
pY1_T0_S1 = 0.004)
# GAF bound
sensitivityparametersM(whichEst = "RR_tot",
whichBound = "GAF",
Vval = matrix(c(1, 0, 0.85, 0.15), ncol = 2),
Uval = matrix(c(1, 0, 0.5, 0.5), ncol = 2),
Tcoef = c(-6.2, 1.75),
Ycoef = c(-5.2, 5.0, -1.0),
Scoef = matrix(c(1.2, 2.2, 0.0, 0.5,
2.0, -2.75, -4.0, 0.0),
ncol = 4),
Mmodel = "L",
pY1_T1_S1 = 0.286,
pY1_T0_S1 = 0.004)
## ----eval = TRUE--------------------------------------------------------------
SVbound(whichEst = "RR_tot",
pY1_T1_S1 = 0.004,
pY1_T0_S1 = 0.286,
RR_UY_T1 = 2.71,
RR_UY_T0 = 1.94,
RR_SU_T1 = 1.80,
RR_SU_T0 = 2.00)
## ----eval = TRUE--------------------------------------------------------------
SVboundsharp(BF_U = 1.56,
pY1_T0_S1 = 0.27)
## ----eval = TRUE--------------------------------------------------------------
attach(zika_learner)
AFbound(whichEst = "RR_tot",
outcome = mic_ceph[sel_ind == 1],
treatment = zika[sel_ind == 1],
selection = mean(sel_ind))
## ----eval = TRUE--------------------------------------------------------------
AFbound(whichEst = "RR_tot",
outcome = c(0.286, 0.004),
treatment = c(0.002, 0.998),
selection = mean(sel_ind))
## ----eval = TRUE--------------------------------------------------------------
GAFbound(whichEst = "RR_tot",
M = 0.4502,
m = 0.002,
outcome = mic_ceph[sel_ind == 1],
treatment = zika[sel_ind == 1],
selection = mean(sel_ind))
## ----eval = TRUE--------------------------------------------------------------
CAFbound(whichEst = "RR_tot",
M = 0.3,
m = 0.005,
outcome = c(0.286, 0.004),
treatment = c(0.002, 0.998),
selection = mean(sel_ind))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.