Nothing
###### S-function: glmeAux ##########
# For obtaining df and covariance matrix
# of fixed and random parameter estimates and predictions in
# genealized linear mixed models.
# Last changed: 29 JUL 2002
glmeAux <- function(X,Z,G,block.inds=NA,ridge.reg.fit,family)
{
# Set the sample size, n.
n <- nrow(X)
# Obtain the degrees of freedom of the overall fit, starting
# with the Q1-matrix.
Q1 <- qr.Q(ridge.reg.fit$qr)[1:n,]
Q1TQ1 <- t(Q1)%*%Q1
df.fit <- sum(diag(Q1TQ1))
# Obtain error degrees of freedom.
df.var <- sum(diag(Q1TQ1%*%Q1TQ1))
df.res <- n - 2*df.fit + df.var
# Extract further information about the model
# Obtain the C-matrix and R.inv-matrix
R <- qr.R(ridge.reg.fit$qr)
Cmat.w <- Q1%*%R
I.mat <- diag(rep(1,nrow(R)))
R.inv <- backsolve(R,I.mat)
# Obtain the unscaled covariance matrix, starting
# with the ridge vector.
ridge.vec <- ridge.reg.fit$ridge.vec
cov.mat <- R.inv %*%(I.mat - t(R.inv)%*%(ridge.vec*R.inv))%*%t(R.inv)
# Calculate df for jth component of model
df <- numeric()
for (j in 1:length(block.inds))
{
curr.inds <- block.inds[[j]]
df[j] <- sum(diag(R.inv[curr.inds,]%*%t(Q1)%*%Cmat.w[,curr.inds]))
}
# Package auxiliary quantities object and return
glmeAux.object <- list(cov.mat=cov.mat,df=df,
block.inds=block.inds,random.var=G,
df.fit=df.fit,df.res=df.res)
return(glmeAux.object)
}
########## End of glmeAux ##########
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.