inst/doc/SenSpe.R

## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

## ----install, eval=FALSE, message=FALSE, warning=FALSE------------------------
#  install.packages("SenSpe")

## ----snsp1m, eval=TRUE, message=FALSE, warning=FALSE--------------------------
library("SenSpe")
## simulate biomarkers of 100 cases and 100 controls
set.seed(1234)
n1 <- 100
n0 <- 100
mk <- c(rnorm(n1,1,1),rnorm(n0,0,1))
## estimate specificity at controlled 0.95 sensitivity
snsp1m(mk, n1=n1, s0=0.95)

## ----snsp2mp, eval=TRUE, message=FALSE, warning=FALSE-------------------------
## simulate paired biomarkers X and Y, with correlation 0.5, 100 cases and 100 controls
n1 <- 100
n0 <- 100
rho <- 0.5
set.seed(1234)
mkx <- rnorm(n1+n0,0,1)
mky <- rho*mkx + sqrt(1-rho^2)*rnorm(n1+n0,0,1)
mkx <- mkx + c(rep(2,n1),rep(0,n0))
mky <- mky + c(rep(1,n1),rep(0,n0))
mk <- rbind(mkx,mky)
## compare specificity at controlled 0.95 sensitivity
snsp2mp(mk, 100, 0.95)

## ----snsp2mup, eval=TRUE, message=FALSE, warning=FALSE------------------------
set.seed(1234)
## simulate biomarker X with 100 cases and 100 controls
mkx <- c(rnorm(100,2,1),rnorm(100,0,1))
## simulate biomarker Y with 100 cases and 100 controls
mky <- c(rnorm(100,1,1),rnorm(100,0,1))
## compare specificity at controlled 0.95 sensitivity
snsp2mup(mkx, 100, mky, 100, 0.95)

Try the SenSpe package in your browser

Any scripts or data that you put into this service are public.

SenSpe documentation built on May 29, 2024, 9:21 a.m.