View source: R/Estimate_st_intensity_pixel.R
| estimate.intensity.pixel | R Documentation |
Computes kernel-smoothed estimates of spatial, temporal, separable, and non-separable spatio-temporal intensity functions on a regular space-time grid, together with separability diagnostics used in first-order separability analysis.
estimate.intensity.pixel(X, s.region, t.region, n.grid, edge, owin = NULL)
X |
Numeric matrix/data.frame with three columns |
s.region |
Numeric matrix with two columns defining the spatial window (typically polygon vertices).
Grid limits are taken as |
t.region |
Numeric vector of length 2 giving the temporal window |
n.grid |
Integer vector of length 3 giving grid resolution in |
edge |
List with components |
owin |
Optional observation window of class |
The estimator uses product Gaussian kernels with supplied bandwidths and (Gaussian)
edge-correction factors, typically produced by calc.bandwidths.and.edgecorr.
A list with grid coordinates x,y,t, intensity estimates, the diagnostic S.fun,
its marginal summaries S.space and S.time, and deviation measures.
Ghorbani, M., Vafaei, N., Dvořák, J., and Myllymäki, M. (2021). Testing the first-order separability hypothesis for spatio-temporal point patterns. Computational Statistics & Data Analysis, 161, 107245.
S.based.functions, calc.bandwidths.and.edgecorr
n <- 100
X <- cbind(x = stats::runif(n), y = stats::runif(n), t = stats::runif(n, 0, 10))
s.region <- matrix(c(0,0, 1,0, 1,1, 0,1), ncol=2, byrow=TRUE)
t.region <- c(0, 10)
n.grid <- c(10, 10, 5)
edge <- list(bw = c(0.05, 0.05, 0.5), space = rep(1, n), time = rep(1, n))
res <- estimate.intensity.pixel(X, s.region, t.region, n.grid, edge)
str(res)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.