| norm3d | R Documentation |
Evaluates a trivariate normal density on (x,y,t) with independent components
(diagonal covariance). The density is the product of three univariate normal densities:
f(x,y,t) = \phi(x;\mu_x,\sigma_x)\,\phi(y;\mu_y,\sigma_y)\,\phi(t;\mu_t,\sigma_t).
norm3d(x, y, t, mu = c(0.3, 0.3, 0.2), sd = c(0.05, 0.05, 0.05), log = FALSE)
x |
Numeric vector of x-coordinate(s). |
y |
Numeric vector of y-coordinate(s). |
t |
Numeric vector of time coordinate(s). |
mu |
Numeric vector of length 3 giving |
sd |
Numeric vector of length 3 giving positive standard deviations |
log |
Logical; if |
Numeric vector of densities (or log-densities) with length determined by standard
recycling rules for x, y, and t.
Mohammad Ghorbani mohammad.ghorbani@slu.se
Ghorbani, M., Vafaei, N., Dvořák, J., and Myllymäki, M. (2021). Testing the first-order separability hypothesis for spatio-temporal point patterns. Computational Statistics & Data Analysis, 161, 107245.
norm2d, get.lambda.function, estimate.st.intensity
norm3d(0.3, 0.3, 0.2) # peak value at the mean (with default parameters)
norm3d(c(0.2, 0.3), 0.3, 0.2)
x <- y <- seq(0, 1, length.out = 100)
z <- outer(x, y, function(x, y) norm3d(x, y, t = 0.2))
image(x, y, z, col = heat.colors(50), main = "Spatial slice of norm3d at t = 0.2")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.