View source: R/Simulate_ST_LGCP.R
| rstLGCPP | R Documentation |
Generates a realization of a spatio-temporal LGCP over a user-defined domain. The process is simulated using a log-Gaussian random field combined with a deterministic trend function, and points are generated by thinning a homogeneous Poisson process.
rstLGCPP(
xlim = NULL,
ylim = NULL,
tlim = NULL,
grid = c(15, 15, 10),
mu = NULL,
Lambda = NULL,
Lmax = NULL,
par1 = c(1, 0.05),
par2 = c(1, 0.06),
sigmas = c(0.5, 0.5, 1),
mu_par = c(1.2, 0.25, 5)
)
xlim, ylim, tlim |
Numeric vectors of length 2 specifying the spatial and temporal domains. |
grid |
Integer vector of length 3 specifying the number of grid cells in x, y, and t. |
mu |
Optional. A function of (x, y, t, par) defining a deterministic trend. Default is nonlinear. |
Lambda |
Optional. A user-supplied 3D intensity array or function. If |
Lmax |
Optional. Maximum intensity used for thinning. Can be numeric or a function. If |
par1, par2 |
Parameters for temporal and spatial exponential covariance models, respectively. |
sigmas |
Weights for combining spatial, temporal, and spatio-temporal components of the latent Gaussian field. |
mu_par |
Parameters passed to the default trend function |
A list with:
A data frame of simulated spatio-temporal points.
The latent Gaussian field output from Gauss.st.F.
out <- rstLGCPP(xlim = c(0,1),
ylim = c(0,1),
tlim = c(0,1),
grid = c(15,15,10))
plot_stlgcp(data = out)
plot_stpp(data = out$st.lgcp, type = "3D")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.