Description Details Author(s) References Examples
This package detects instances of Simpson's Paradox in datasets of bivariate continuous data . It examines subpopulations in the data, either user-defined or by means of cluster analysis, to test whether a regression at the level of the group is in the opposite direction at the level of subpopulations.
Package: | Simpsons |
Type: | Package |
Version: | 1.0 |
Date: | 2012-08-17 |
License: | GPL-2 |
Rogier Kievit & Sacha Epskamp
Maintainer: Rogier Kievit <rogierkievit@gmail.com>
Fraley, C., & Raftery, A. E. (1998a) MCLUST: Software for model-based cluster and discriminant analysis. Department of Statistics, University of Washington: Technical Report No.342.
Fraley, C., & Raftery, A. E. (1998b). How many clusters? Which clustering method? - Answers via model-based cluster analysis. Department of Statistics, University of Washington: Technical Report no. 329.
Kievit, R.A., Frankenhuis, W. & Borsboom, D. (in preparation). Simpson's Paradox in Psychological Science: A Practical Guide.
Simpson, E. H. (1951). The interpretation of interaction in contingency tables. Journal of the Royal Statistical Society, Ser. B, 13, 238-241.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | ## Not run:
#example 1. Here, we want to regress 'Coffee' on 'Neuroticism',
#taking into account possible gender differences.
#Simulating 100 males
coffeem=rnorm(100,100,15)
neuroticismm=(coffeem*.8)+rnorm(100,15,8)
clusterid=rep(1,100)
males=cbind(coffeem,neuroticismm,clusterid)
coffeef=rnorm(100,100,15)
neuroticismf=160+((coffeef*-.8)+rnorm(100,15,8))
clusterid=rep(2,100)
females=cbind(coffeef,neuroticismf,clusterid)
data=data.frame(rbind(males,females))
colnames(data) <- c("Coffee","Neuroticism","gender")
example1=Simpsons(Coffee,Neuroticism,clusterid=gender, data=data)
example1
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.