Nothing
#' SoftBart Probit Regression
#'
#' Fits a nonparametric probit regression model with the nonparametric function
#' modeled using a SoftBart model. Specifically, the model takes \eqn{\Pr(Y = 1
#' \mid X = x) = \Phi\{a + r(x)\}}{P(Y = 1 | X = x) = pnorm(a + r(x))} where
#' \eqn{a}{a} is an offset and \eqn{r(x)}{r(x)} is a Soft BART ensemble.
#'
#' @param formula A model formula with a binary factor on the left-hand-side and predictors on the right-hand-side.
#' @param data A data frame consisting of the training data.
#' @param test_data A data frame consisting of the testing data.
#' @param num_tree The number of trees in the ensemble to use.
#' @param k Determines the standard deviation of the leaf node parameters, which is given by \code{3 / k / sqrt(num_tree)}.
#' @param hypers A list of hyperparameters constructed from the \code{Hypers()} function (\code{num_tree}, \code{k}, and \code{sigma_mu} are overridden by this function).
#' @param opts A list of options for running the chain constructed from the \code{Opts()} function (\code{update_sigma} is overridden by this function).
#' @param verbose If \code{TRUE}, progress of the chain will be printed to the console.
#'
#' @return Returns a list with the following components:
#' \itemize{
#' \item \code{sigma_mu}: samples of the standard deviation of the leaf node parameters
#' \item \code{var_counts}: a matrix with a column for each predictor group containing the number of times each predictor is used in the ensemble at each iteration.
#' \item \code{mu_train}: samples of the nonparametric function evaluated on the training set; \code{pnorm(mu_train)} gives the success probabilities.
#' \item \code{mu_test}: samples of the nonparametric function evaluated on the test set; \code{pnorm(mu_train)} gives the success probabilities .
#' \item \code{p_train}: samples of probabilities on training set.
#' \item \code{p_test}: samples of probabilities on test set.
#' \item \code{mu_train_mean}: posterior mean of \code{mu_train}.
#' \item \code{mu_test_mean}: posterior mean of \code{mu_test}.
#' \item \code{p_train_mean}: posterior mean of \code{p_train}.
#' \item \code{p_test_mean}: posterior mean of \code{p_test}.
#' \item \code{offset}: we fit model of the form (offset + BART), with the offset estimated empirically prior to running the chain.
#' \item \code{pnorm_offset}: the \code{pnorm} of the offset, which is chosen to match the probability of the second factor level.
#' \item \code{formula}: the formula specified by the user.
#' \item \code{ecdfs}: empirical distribution functions, used by the \code{predict} function.
#' \item \code{opts}: the options used when running the chain.
#' \item \code{forest}: a forest object; see the \code{MakeForest} documentation for more details.
#' }
#' @export
#'
#' @examples
#'
#' ## NOTE: SET NUMBER OF BURN IN AND SAMPLE ITERATIONS HIGHER IN PRACTICE
#'
#' num_burn <- 10 ## Should be ~ 5000
#' num_save <- 10 ## Should be ~ 5000
#'
#' set.seed(1234)
#' f_fried <- function(x) 10 * sin(pi * x[,1] * x[,2]) + 20 * (x[,3] - 0.5)^2 +
#' 10 * x[,4] + 5 * x[,5]
#'
#' gen_data <- function(n_train, n_test, P, sigma) {
#' X <- matrix(runif(n_train * P), nrow = n_train)
#' mu <- (f_fried(X) - 14) / 5
#' X_test <- matrix(runif(n_test * P), nrow = n_test)
#' mu_test <- (f_fried(X_test) - 14) / 5
#' Y <- factor(rbinom(n_train, 1, pnorm(mu)), levels = c(0,1))
#' Y_test <- factor(rbinom(n_test, 1, pnorm(mu_test)), levels = c(0,1))
#'
#' return(list(X = X, Y = Y, mu = mu, X_test = X_test, Y_test = Y_test,
#' mu_test = mu_test))
#' }
#'
#' ## Simiulate dataset
#' sim_data <- gen_data(250, 250, 100, 1)
#'
#' df <- data.frame(X = sim_data$X, Y = sim_data$Y)
#' df_test <- data.frame(X = sim_data$X_test, Y = sim_data$Y_test)
#'
#' ## Fit the model
#'
#' opts <- Opts(num_burn = num_burn, num_save = num_save)
#' fitted_probit <- softbart_probit(Y ~ ., df, df_test, opts = opts)
#'
#' ## Plot results
#'
#' plot(fitted_probit$mu_test_mean, sim_data$mu_test)
#' abline(a = 0, b = 1)
#'
#'
softbart_probit <- function(formula, data, test_data, num_tree = 20,
k = 1, hypers = NULL, opts = NULL, verbose = TRUE) {
## Get design matricies and groups for categorical
char_cols <- sapply(data, is.character)
data[char_cols] <- lapply(data[char_cols], factor)
char_cols <- sapply(test_data, is.character)
test_data[char_cols] <- lapply(test_data[char_cols], factor)
dv <- dummyVars(formula, data)
terms <- attr(dv$terms, "term.labels")
group <- dummy_assign(dv)
suppressWarnings({
X_train <- predict(dv, data)
X_test <- predict(dv, test_data)
})
Y_train <- model.response(model.frame(formula, data))
Y_test <- model.response(model.frame(formula, test_data))
stopifnot(is.factor(Y_train))
stopifnot(length(levels(Y_train)) == 2)
Y_train <- as.numeric(Y_train) - 1
Y_test <- as.numeric(Y_test) - 1
pnorm_offset <- mean(Y_train)
offset <- qnorm(pnorm_offset)
## Set up hypers
if(is.null(hypers)) {
hypers <- Hypers(X = X_train, Y = Y_train)
}
hypers$sigma_mu = 3 / k / sqrt(num_tree)
hypers$sigma <- 1
hypers$sigma_hat <- 1
hypers$num_tree <- num_tree
hypers$group <- group
## Set up opts
if(is.null(opts)) {
opts <- Opts()
}
opts$update_sigma <- FALSE
opts$num_print <- 2147483647
## Normalize!
make_01_norm <- function(x) {
a <- min(x)
b <- max(x)
return(function(y) (y - a) / (b - a))
}
ecdfs <- list()
for(i in 1:ncol(X_train)) {
ecdfs[[i]] <- ecdf(X_train[,i])
if(length(unique(X_train[,i])) == 1) ecdfs[[i]] <- identity
if(length(unique(X_train[,i])) == 2) ecdfs[[i]] <- make_01_norm(X_train[,i])
}
for(i in 1:ncol(X_train)) {
X_train[,i] <- ecdfs[[i]](X_train[,i])
X_test[,i] <- ecdfs[[i]](X_test[,i])
}
## Make forest ----
probit_forest <- MakeForest(hypers, opts, FALSE)
## Initialize Z
mu <- as.numeric(probit_forest$do_predict(X_train))
lower <- ifelse(Y_train == 0, -Inf, 0)
upper <- ifelse(Y_train == 0, 0, Inf)
## Initialize output
mu_train <- matrix(NA, nrow = opts$num_save, ncol = length(Y_train))
mu_test <- matrix(NA, nrow = opts$num_save, ncol = length(Y_test))
sigma_mu <- numeric(opts$num_save)
varcounts <- matrix(NA, nrow = opts$num_save, ncol = length(terms))
## Warmup
pb <- progress_bar$new(
format = " warming up [:bar] :percent eta: :eta",
total = opts$num_burn, clear = FALSE, width= 60)
for(i in 1:opts$num_burn) {
if(verbose) pb$tick()
## Sample Z
Z <- rtruncnorm(n = length(Y_train), a = lower, b = upper,
mean = mu + offset, sd = 1)
## Update R
mu <- probit_forest$do_gibbs(X_train, Z - offset, X_train, 1)
}
## Save
pb <- progress_bar$new(
format = " saving [:bar] :percent eta: :eta",
total = opts$num_save, clear = FALSE, width= 60)
for(i in 1:opts$num_save) {
if(verbose) pb$tick()
for(j in 1:opts$num_thin) {
## Sample Z
Z <- rtruncnorm(n = length(Y_train), a = lower, b = upper,
mean = offset + mu, sd = 1)
## Update R
mu <- probit_forest$do_gibbs(X_train, Z - offset, X_train, 1)
}
sigma_mu[i] <- probit_forest$get_sigma_mu()
varcounts[i,] <- probit_forest$get_counts()
mu_train[i,] <- mu + offset
mu_test[i,] <- probit_forest$do_predict(X_test) + offset
}
p_train <- pnorm(mu_train)
p_test <- pnorm(mu_test)
colnames(varcounts) <- terms
out <- list(sigma_mu = sigma_mu, var_counts = varcounts, mu_train = mu_train,
p_train = p_train, p_test = p_test,
mu_test = mu_test,
mu_train_mean = colMeans(mu_train),
mu_test_mean = colMeans(mu_test),
p_train_mean = colMeans(p_train),
p_test_mean = colMeans(p_test),
offset = offset,
pnorm_offset = pnorm(offset),
formula = formula,
ecdfs = ecdfs,
opts = opts,
forest = probit_forest,
dv = dv)
class(out) <- "softbart_probit"
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.