Description Usage Arguments Value Examples
Solve Spatial Convex Clustering problem for path of regularization parameters
1 2 3 | SpaCC_Path(X, w, gamma.seq, nu = 1/nrow(X), verbose = FALSE,
tol.base = 1e-04, tol.miss = 1e-04, max.iter.base = 5000,
max.iter.miss = 500)
|
X |
A subject (n) by variable (p) matrix; the data |
w |
A vector of length p-1; weights for clustering |
gamma.seq |
A vector of positive scalars; regularization parameter sequence |
nu |
A positive scalar; augmented Lagrangian paramter |
verbose |
Logical; should messages be printed? |
tol.base |
A small positive scalar; convergence tolerance for base SpaCC problem. |
tol.miss |
A small positive scalar; convergence tolerance for missing data problem. |
max.iter.base |
A positive integer; maximum number of iterations for base SpaCC problem |
max.iter.miss |
A positive integer; maximum number of iterations for missing data problem |
A list with elements UPath, VPath, LamPath, and gamma.seq
1 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.