Description Usage Arguments Details Value Author(s) References Examples
Computes sparse vector autoregressive coefficients matrices of order 1 and
order 2 and precision matrix estimates for time series chain graphical
models using SCAD penalty. In time series chain graphs directed
edges are identified by nonzero entries of the autoregressive
coefficients matrix and undirected
edges are identified by
nonzero entries of the precision matrix.
1 2 3 4 |
data |
Longitudinal data format. |
lam1 |
Either a scalar or a vector of tuning parameter values for the
SCAD penalty on the precision matrix. The default is |
lam2 |
Either a scalar or a vector of tuning parameter values for the
SCAD penalty on the precision matrix. The default is |
nlambda |
The number of values used in |
model |
This specifies the order of vector autoregressive models. Vector autoregressive
model of order 1 is applied if |
penalty |
This specifies the type of penalty function uto be used. SCAD penalty function
is applied if |
optimality |
This specifies the type of information based model selection criteria. When
optimality is "NULL" it computes the time series chain graphical model
solutions for specified scalar values of the tuning parameters |
control |
The argument control = list(maxit.out = 5, maxit.in = 50, tol.out = 1e-04, silent = TRUE)
|
For description of the objective functions and computational details see Abegaz and Wit (2013).
A list containing:
theta |
Precision matrix estimate. The nonzero estimates of
the precision matrix are used for constructing |
gamma |
Autoregressive coefficients matrix estimate. The nonzero estimates
of the autoregression matrix are used for constructing |
lam1.opt |
The optimal tuning parameter for SCAD penalty on the precision matrix selected with minimum information criterion. |
lam2.opt |
The optimal tuning parameter for SCAD penalty on the autoregressive coefficients matrix selected with minimum BIC criterion. |
min.ic |
Minimum value of the optimality criterion. |
tun.ic |
A matrix containing the list of tuning parameter values and the corresponding model selection or optimality values. |
lam1.seq |
The sequence of tuning parameter values related to precision matrix. |
lam2.seq |
The sequence of tuning parameter values related to autoregression matrix. |
s.theta |
Sparsity level of the precision matrix. |
s.gamma |
Sparsity level of the autoregression coefficients matrix. |
Fentaw Abegaz and Ernst Wit
Fentaw Abegaz and Ernst Wit (2013). Sparse time series chain graphical models for reconstructing genetic networks. Biostatistics. 14, 3: 586-599.
Rothman, A.J., Levina, E., and Zhu, J. (2010). Sparse multivariate regression with covariance estimation. Journal of Computational and Graphical Statistics. 19: 947–962.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | seed = 321
datas <- sim.data(model="ar1", time=10,n.obs=10, n.var=5,seed=seed,prob0=0.35,
network="random")
data.fit <- datas$data1
prec_true <- datas$theta
autoR_true <- datas$gamma
res.tscgm <- sparse.tscgm(data=data.fit, lam1=NULL, lam2=NULL, nlambda=NULL,
model="ar1", penalty="scad",optimality="bic_mod",control=list(maxit.out = 10, maxit.in = 100))
#Estimated sparse precision and autoregression matrices
prec <- res.tscgm$theta
autoR <- res.tscgm$gamma
#Optimal tuning parameter values
lambda1.opt <- res.tscgm$lam1.opt
lambda2.opt <- res.tscgm$lam2.opt
#Sparsity levels
sparsity_theta <- res.tscgm$s.theta
sparsity_gamma <- res.tscgm$s.gamma
#Graphical visualization
oldpar <- par(mfrow=c(2,2))
plot.tscgm(datas, mat="precision",main="True precision matrix")
plot.tscgm(res.tscgm, mat="precision",main="Estimated precision matrix")
plot.tscgm(datas, mat="autoregression",main="True autoregression coef. matrix")
plot.tscgm(res.tscgm, mat="autoregression",
main="Estimated autoregression coef. matrix")
par(oldpar)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.