plot,Splinets-method | R Documentation |
The method provides graphical visualization of a Splinets
-class object. The method plot a
Splinets
in a cartesian or a polar coordinate if it is a regular splines or a periodic splines, respectively.
## S4 method for signature 'Splinets' plot( object, x = NULL, sID = NULL, vknots = TRUE, type = "stnd", mrgn = 2, lwd = 2, ... )
object |
|
x |
vector, specifying where the splines will be evaluated for the plots; |
sID |
vector, specifying indices of the splines to be plotted; |
vknots |
logic, indicates if auxiliary vertical lines will be added to highlight the positions of knots; The default is |
type |
string, controls the layout of graphs; The following options are available
|
mrgn |
number, specifying the margin size in the dyadic structure plot; |
lwd |
positive integer, the line width; |
... |
other standard graphical parameters can be passed; |
The standard method of plotting splines in a Splinet
-object.
It plots a single graph with all splines in the object except if the field type
of the
object represents a splinet. In the latter case, the default is the (dyadic) net plot of
the basis. The string argument type
can overide this to produce a plot that does not use the dyadic net.
Most of the standard graphical parameters can be passed to this function.
A plot visualizing a Splinet object. The entire set of splines will be displayed in a plot.
Liu, X., Nassar, H., Podgorski, K. "Dyadic diagonalization of positive definite band matrices and efficient B-spline orthogonalization." Journal of Computational and Applied Mathematics (2022) <https://doi.org/10.1016/j.cam.2022.114444>.
Podgorski, K. (2021)
"Splinets
– splines through the Taylor expansion, their support sets and orthogonal bases." <arXiv:2102.00733>.
Nassar, H., Podgorski, K. (2023) "Splinets 1.5.0 – Periodic Splinets." <arXiv:2302.07552>
evspline
for manually evaluating splines in a Splinet
-object;
Splinets-class
for the definition of the Splinet
-class;
lines,Splinets-method
for adding graphs to existing plots;
#-----------------------------------------------------# #-------------------Ploting splinets------------------# #-----------------------------------------------------# #Constructed splines n=25; xi=sort(runif(n+2)); xi[1]=0; xi[n+2]=1; k=3 supp=list(t(c(2,12)),t(c(4,20)),t(c(6,25))) #defining support ranges for three splines #Initial random matrices of the derivative for each spline SS1=matrix(rnorm((supp[[1]][1,2]-supp[[1]][1,1]+1)*(k+1)),ncol=(k+1)) SS2=matrix(rnorm((supp[[2]][1,2]-supp[[2]][1,1]+1)*(k+1)),ncol=(k+1)) SS3=matrix(rnorm((supp[[3]][1,2]-supp[[3]][1,1]+1)*(k+1)),ncol=(k+1)) spl=construct(xi,k,SS1,supp[[1]]) #constructing the first correct spline nspl=construct(xi,k,SS2,supp[[2]],'CRFC') spl=gather(spl,nspl) #the second and the first ones nspl=construct(xi,k,SS3,supp[[3]],'CRLC') spl=gather(spl,nspl) #the third is added plot(spl) plot(spl,sID=c(1,3)) plot(spl,sID=2) t = seq(0,0.5,length.out = 1000) plot(spl, t, sID = 1) #Random splines n=17; k=4; xi=sort(runif(n+2)); xi[1]=0; xi[n+2]=1 S=matrix(rnorm((n+2)*(k+1)),ncol=(k+1)) spl=construct(xi,k,S) plot(spl,main="Mean Spline",lty=2,lwd=2,xlab='') RS=rspline(spl,5) plot(RS,main="Random splines around the mean spline",ylim=3*range(spl@der[[1]][,1]) ) lines(spl,col='red',lwd=4,lty=2) #Periodic splines xi = seq(0, 1, length.out = 25) so = splinet(xi, periodic = TRUE) plot(so$bs) plot(so$os) plot(so$bs,type= "dyadic") plot(so$bs, sID=c(4,6)) plot(so$os, type="simple",sID=c(4,6))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.