| plot,Splinets-method | R Documentation | 
The method provides graphical visualization of a Splinets-class object. The method plot a
Splinets in a cartesian or a polar coordinate if it is a regular splines or a periodic splines, respectively.
## S4 method for signature 'Splinets'
plot(
  object,
  x = NULL,
  sID = NULL,
  vknots = TRUE,
  type = "stnd",
  mrgn = 2,
  lwd = 2,
  ...
)
| object | 
 | 
| x | vector, specifying where the splines will be evaluated for the plots; | 
| sID | vector, specifying indices of the splines to be plotted; | 
| vknots | logic, indicates if auxiliary vertical lines will be added to highlight the positions of knots; The default is  | 
| type | string, controls the layout of graphs; The following options are available 
 | 
| mrgn | number, specifying the margin size in the dyadic structure plot; | 
| lwd | positive integer, the line width; | 
| ... | other standard graphical parameters can be passed; | 
The standard method of plotting splines in a Splinet-object. 
It plots a single graph with all splines in the object except if the field type of the
object represents a splinet. In the latter case, the default is the (dyadic) net plot of 
the basis. The string argument type can overide this to produce a plot that does not use the dyadic net.
Most of the standard graphical parameters can be passed to this function.
A plot visualizing a Splinet object. The entire set of splines will be displayed in a plot.
Liu, X., Nassar, H., Podg\mbox{\'o}rski, K. "Dyadic diagonalization of positive definite band matrices and efficient B-spline orthogonalization." Journal of Computational and Applied Mathematics (2022) <https://doi.org/10.1016/j.cam.2022.114444>.
Podg\mbox{\'o}rski, K. (2021) 
"Splinets – splines through the Taylor expansion, their support sets and orthogonal bases." <arXiv:2102.00733>.
Nassar, H., Podg\mbox{\'o}rski, K. (2023) "Splinets 1.5.0 – Periodic Splinets." <arXiv:2302.07552>
evspline for manually evaluating splines in a Splinet-object;
Splinets-class for the definition of the Splinet-class;
lines,Splinets-method for adding graphs to existing plots;
#-----------------------------------------------------#
#-------------------Ploting splinets------------------#
#-----------------------------------------------------#
#Constructed splines
n=25; xi=sort(runif(n+2)); xi[1]=0; xi[n+2]=1; k=3
supp=list(t(c(2,12)),t(c(4,20)),t(c(6,25))) #defining support ranges for three splines
#Initial random matrices of the derivative for each spline
SS1=matrix(rnorm((supp[[1]][1,2]-supp[[1]][1,1]+1)*(k+1)),ncol=(k+1)) 
SS2=matrix(rnorm((supp[[2]][1,2]-supp[[2]][1,1]+1)*(k+1)),ncol=(k+1)) 
SS3=matrix(rnorm((supp[[3]][1,2]-supp[[3]][1,1]+1)*(k+1)),ncol=(k+1)) 
spl=construct(xi,k,SS1,supp[[1]]) #constructing the first correct spline
nspl=construct(xi,k,SS2,supp[[2]],'CRFC')
spl=gather(spl,nspl) #the second and the first ones
nspl=construct(xi,k,SS3,supp[[3]],'CRLC')
spl=gather(spl,nspl) #the third is added
plot(spl)
  plot(spl,sID=c(1,3))
plot(spl,sID=2)
t = seq(0,0.5,length.out = 1000)
plot(spl, t, sID = 1)
#Random splines
n=17; k=4; xi=sort(runif(n+2)); xi[1]=0; xi[n+2]=1 
S=matrix(rnorm((n+2)*(k+1)),ncol=(k+1))
spl=construct(xi,k,S) 
plot(spl,main="Mean Spline",lty=2,lwd=2,xlab='')
RS=rspline(spl,5)
plot(RS,main="Random splines around the mean spline",ylim=3*range(spl@der[[1]][,1]) )
lines(spl,col='red',lwd=4,lty=2)
#Periodic splines
xi = seq(0, 1, length.out = 25)
so = splinet(xi, periodic = TRUE) 
plot(so$bs)
plot(so$os)
plot(so$bs,type= "dyadic")
plot(so$bs, sID=c(4,6))
plot(so$os, type="simple",sID=c(4,6))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.