Exam1.1: Example1.1 from Generalized Linear Mixed Models: Modern...

Exam1.1R Documentation

Example1.1 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-5)

Description

Exam1.1 is used for inspecting probability distribution and to define a plausible process through linear models and generalized linear models.

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

Table1.1

Examples

#-------------------------------------------------------------
## Linear Model and results discussed in Article 1.2.1 after Table1.1
#-------------------------------------------------------------
data(Table1.1)
Exam1.1.lm1 <- lm(formula =  y/Nx ~ x, data = Table1.1)
summary(Exam1.1.lm1 )
library(parameters)
model_parameters(Exam1.1.lm1)

#-------------------------------------------------------------
## GLM fitting with logit link (family=binomial)
#-------------------------------------------------------------
Exam1.1.glm1 <-
        glm(
              formula = y/Nx ~ x
            , family  =  binomial(link = "logit")
            , data    = Table1.1
            )
## this glm() function gives warning message of non-integer success
summary(Exam1.1.glm1)
model_parameters(Exam1.1.glm1)

#-------------------------------------------------------------
## GLM fitting with logit link (family = Quasibinomial)
#-------------------------------------------------------------
Exam1.1.glm2 <-
      glm(
           formula = y/Nx~x
         , family =  quasibinomial(link = "logit")
         , data   =  Table1.1
         )
## problem of "warning message of non-integer success" is overome by using quasibinomial family
summary(Exam1.1.glm2)
model_parameters(Exam1.1.glm2)

#-------------------------------------------------------------
## GLM fitting with survey package(produces same result as using quasi binomial family in glm)
#-------------------------------------------------------------
library(survey)
design   <- svydesign(ids =  ~1, data =  Table1.1)

Exam1.1.svyglm  <-
        svyglm(
                 formula  =  y/Nx~x
               , design   =  design
               , family   =  quasibinomial(link = "logit")
               )
summary(Exam1.1.svyglm)
model_parameters(Exam1.1.svyglm)

#-------------------------------------------------------------
## Figure 1.1
#-------------------------------------------------------------
Newdata     <-
  data.frame(
    Table1.1
    , LM       =  Exam1.1.lm1$fitted.values
    , GLM      =  Exam1.1.glm1$fitted.values
    , QB       =  Exam1.1.glm2$fitted.values
    , SM       =  Exam1.1.svyglm$fitted.values
  )
#-------------------------------------------------------------
## One Method to plot  Figure1.1
#-------------------------------------------------------------
library(ggplot2)

Figure1.1   <-
  ggplot(
      data     = Newdata
    , mapping  = aes(x = x, y = y/Nx)
  )     +
  geom_point (
    mapping  = aes(colour = "black")
  )  +
  geom_point (
    data     = Newdata
    , mapping  = aes(x = x, y = LM, colour = "blue"), shape = 2
  )  +
  geom_line(
    data     = Newdata
    , mapping  = aes(x = x, y = LM, colour = "blue")
  )   +
  geom_point (
    data     = Newdata
    , mapping  = aes(x = x, y = GLM, colour ="red"), shape = 3
  ) +
  geom_smooth (
    data     = Newdata
    , mapping  = aes(x = x, y = GLM, colour = "red")
    , stat     = "smooth"
  ) +
  theme_bw()    +
  scale_colour_manual (
    values = c("black", "blue", "red"),
    labels = c("observed", "LM", "GLM")
  )  +
  guides (
    colour   = guide_legend(title = "Plot")
  ) +
  labs (
    title     = "Linear Model vs Logistic Model"
  ) +
  labs (
    y         = "p"
  )
print(Figure1.1)

#-------------------------------------------------------------
## Another way to plot Figure 1.1
#-------------------------------------------------------------
newdata   <-
  data.frame(
    P     =  c(
                Table1.1$y/Table1.1$Nx
              , Exam1.1.lm1$fitted.values
              , Exam1.1.glm1$fitted.values
               )
    , X     =  rep(Table1.1$x, 3)
    , group =  rep(c('Obs','LM','GLM'), each = length(Table1.1$x))
  )

Figure1.1      <-
  ggplot(
      data    = newdata
    , mapping = aes(x = X , y = P)
  )    +
  geom_point(
    mapping = aes(x = X , y = P, colour = group , shape=group)
  ) +
  geom_smooth(
    data    = subset(x = newdata, group == "LM")
    , mapping = aes(x=X,y=P)
    , col     = "green"
  ) +
  geom_smooth(
    data    = subset(x = newdata, group=="GLM")
    , mapping = aes(x = X , y = P)
    , col     = "red"
  ) +
  theme_bw() +
  labs(
    title   = "Linear Model vs Logistic Model"
  )
print(Figure1.1)

#-------------------------------------------------------------
## Correlation among p and fitted values using Gaussian link
#-------------------------------------------------------------
(lmCor <- cor(Table1.1$y/Table1.1$Nx, Exam1.1.lm1$fitted.values))

#-------------------------------------------------------------
## Correlation among p and fitted values using quasi binomial link
#-------------------------------------------------------------
(glmCor <- cor(Table1.1$y/Table1.1$Nx, Exam1.1.glm1$fitted.values))

StroupGLMM documentation built on Oct. 2, 2024, 1:07 a.m.