Exam2.B.6: Example 2.B.6 from Generalized Linear Mixed Models: Modern...

Exam2.B.6R Documentation

Example 2.B.6 from Generalized Linear Mixed Models: Modern Concepts, Methods and Applications by Walter W. Stroup(p-58)

Description

Exam2.B.6 is related to multi batch regression data assuming different forms of linear models keeping batch effect random.

Author(s)

  1. Muhammad Yaseen (myaseen208@gmail.com)

  2. Adeela Munawar (adeela.uaf@gmail.com)

References

  1. Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.

See Also

Table1.2

Examples

#-----------------------------------------------------------------------------------
## Nested Model with no intercept
#-----------------------------------------------------------------------------------

data(Table1.2)
Table1.2$Batch <- factor(x = Table1.2$Batch)
library(nlme)
Exam2.B.6fm1 <- lme(
      fixed       = Y ~ X
    , data        = Table1.2
    , random      = list(Batch = pdDiag(~1), X = pdDiag(~1))
    , method      = c("REML", "ML")[1]
    )
Exam2.B.6fm1
library(broom.mixed)
tidy(Exam2.B.6fm1)

StroupGLMM documentation built on Oct. 2, 2024, 1:07 a.m.