Exam7.1 | R Documentation |
Exam7.1 explains multifactor models with all factors qualitative
Muhammad Yaseen (myaseen208@gmail.com)
Adeela Munawar (adeela.uaf@gmail.com)
Stroup, W. W. (2012). Generalized Linear Mixed Models: Modern Concepts, Methods and Applications. CRC Press.
@seealso
DataSet7.1
library(emmeans)
library(car)
data(DataSet7.1)
DataSet7.1$a <- factor(x = DataSet7.1$a)
DataSet7.1$b <- factor(x = DataSet7.1$b)
Exam7.1.lm1 <- lm(formula = y ~ a + b + a*b, data = DataSet7.1)
summary(Exam7.1.lm1)
library(parameters)
model_parameters(Exam7.1.lm1)
anova(Exam7.1.lm1)
##---Result obtained as in SLICE statement in SAS for a0 & a1
library(phia)
testInteractions(
model = Exam7.1.lm1
, custom = list(a = c("0" = 1))
, across = "b"
)
testInteractions(
model = Exam7.1.lm1
, custom = list(a = c("1" = 1))
, across = "b"
)
##---Interaction plot
emmip(
object = Exam7.1.lm1
, formula = a~b
, ylab = "y Lsmeans"
, main = "Lsmeans for a*b"
)
#-------------------------------------------------------------
## Individula least squares treatment means
#-------------------------------------------------------------
emmeans(object = Exam7.1.lm1, specs = ~a*b)
##---Simpe effects comparison of interaction by a
## (but it doesn't give the same p-value as in article 7.4.2 page#215)
emmeans(object = Exam7.1.lm1, specs = pairwise~b|a)$contrasts
pairs(emmeans(object = Exam7.1.lm1, specs = ~b|a), simple = "each", combine = TRUE)
pairs(emmeans(object = Exam7.1.lm1, specs = ~b|a), simple = "a")
pairs(emmeans(object = Exam7.1.lm1, specs = ~b|a), simple = "b")
pairs(emmeans(object = Exam7.1.lm1, specs = ~b|a))
contrast(emmeans(object = Exam7.1.lm1, specs = ~b|a))
emmeans(object = Exam7.1.lm1, specs = pairwise~b|a)
emmeans(object = Exam7.1.lm1, specs = pairwise~b|a)$contrasts
##---Alternative method of pairwise comparisons by
## applying contrast
## coefficient (gives the same p-value as in 7.4.2)
contrast(
emmeans(object = Exam7.1.lm1, specs = ~a*b)
, list (
c1 = c(1, 0, -1, 0, 0, 0)
, c2 = c(1, 0, 0, 0, -1, 0)
, c3 = c(0, 0, 1, 0, -1, 0)
, c4 = c(0, 1, 0, -1, 0, 0)
, c5 = c(0, 1, 0, 0, 0, -1)
, c6 = c(0, 1, 0, 0, -1, 0)
)
)
##---Nested Model (page 216)----
Exam7.1.lm2 <- lm(formula = y ~ a + a %in% b, data = DataSet7.1)
summary(Exam7.1.lm2)
model_parameters(Exam7.1.lm2)
anova(Exam7.1.lm2)
car::linearHypothesis(Exam7.1.lm2, c("a0:b1 = a0:b2"))
car::linearHypothesis(Exam7.1.lm2, c("a1:b1 = a1:b2"))
##---Bonferroni's adjusted p-values
emmeans(object = Exam7.1.lm2, specs = pairwise~b|a, adjust = "bonferroni")$contrasts
##--- Alternative method of pairwise comparisons by
## applying contrast coefficient with Bonferroni adjustment
contrast(
emmeans(object = Exam7.1.lm1, specs = ~a*b)
, list (
c1 = c(1, 0, -1, 0, 0, 0)
, c2 = c(1, 0, 0, 0, -1, 0)
, c3 = c(0, 0, 1, 0, -1, 0)
, c4 = c(0, 1, 0, -1, 0, 0)
, c5 = c(0, 1, 0, 0, 0, -1)
, c6 = c(0, 1, 0, 0, -1, 0)
)
, adjust = "bonferroni"
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.