View source: R/gauss_median1d.R
gaussmed1d | R Documentation |
\mathbf{R}
Given a collection of Gaussian distributions \mathcal{N}(\mu_i, \sigma_i^2)
for i=1,\ldots,n
,
compute the Wasserstein median.
gaussmed1d(means, vars, weights = NULL, ...)
means |
a length- |
vars |
a length- |
weights |
a weight of each image; if |
... |
extra parameters including
|
a named list containing
mean of the estimated median distribution.
variance of the estimated median distribution.
gaussmedpd()
for multivariate case.
#----------------------------------------------------------------------
# Tree Gaussians
#
# Three Gaussian distributions are parametrized as follows.
# Type 1 : (mean, sd) = (-4, 1)
# Type 2 : (mean, sd) = ( 0, 1/5)
# Type 3 : (mean, sd) = (+6, 1/2)
#----------------------------------------------------------------------
# GENERATE PARAMETERS
par_mean = c(-4, 0, +6)
par_vars = c(1, 0.04, 0.25)
# COMPUTE THE WASSERSTEIN MEDIAN
gmeds = gaussmed1d(par_mean, par_vars)
# COMPUTE THE BARYCENTER
gmean = gaussbary1d(par_mean, par_vars)
# QUANTITIES FOR PLOTTING
x_grid = seq(from=-6, to=8, length.out=1000)
y_dist1 = stats::dnorm(x_grid, mean=par_mean[1], sd=sqrt(par_vars[1]))
y_dist2 = stats::dnorm(x_grid, mean=par_mean[2], sd=sqrt(par_vars[2]))
y_dist3 = stats::dnorm(x_grid, mean=par_mean[3], sd=sqrt(par_vars[3]))
y_gmean = stats::dnorm(x_grid, mean=gmean$mean, sd=sqrt(gmean$var))
y_gmeds = stats::dnorm(x_grid, mean=gmeds$mean, sd=sqrt(gmeds$var))
# VISUALIZE
opar <- par(no.readonly=TRUE)
plot(x_grid, y_gmeds, lwd=3, col="red", type="l",
main="Three Gaussians", xlab="x", ylab="density",
xlim=range(x_grid), ylim=c(0,2.5))
lines(x_grid, y_gmean, lwd=3, col="blue")
lines(x_grid, y_dist1, lwd=1.5, lty=2)
lines(x_grid, y_dist2, lwd=1.5, lty=2)
lines(x_grid, y_dist3, lwd=1.5, lty=2)
legend("topleft", legend=c("Median","Barycenter"),
col=c("red","blue"), lwd=c(3,3), lty=c(1,2))
par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.