View source: R/image_bary14C.R
imagebary14C | R Documentation |
Using entropic regularization for Wasserstein barycenter computation, imagebary14C
finds a barycentric image X^*
given multiple images X_1,X_2,\ldots,X_N
.
Please note the followings; (1) we only take a matrix as an image so please
make it grayscale if not, (2) all images should be of same size - no resizing is performed.
imagebary14C(images, p = 2, weights = NULL, lambda = NULL, ...)
images |
a length- |
p |
an exponent for the order of the distance (default: 2). |
weights |
a weight of each image; if |
lambda |
a regularization parameter; if |
... |
extra parameters including
|
an (m\times n)
matrix of the barycentric image.
cuturi_fast_2014T4transport
bary14C
## Not run:
#----------------------------------------------------------------------
# MNIST Data with Digit 3
#
# EXAMPLE 1 : Very Small Example for CRAN; just showing how to use it!
# EXAMPLE 2 : Medium-size Example for Evolution of Output
#----------------------------------------------------------------------
# EXAMPLE 1
data(digit3)
datsmall = digit3[1:2]
outsmall = imagebary14C(datsmall, maxiter=3)
# EXAMPLE 2 : Barycenter of 100 Images
# RANDOMLY SELECT THE IMAGES
data(digit3)
dat2 = digit3[sample(1:2000, 100)] # select 100 images
# RUN SEQUENTIALLY
run10 = imagebary14C(dat2, maxiter=10) # first 10 iterations
run20 = imagebary14C(dat2, maxiter=10, init.image=run10) # run 40 more
run50 = imagebary14C(dat2, maxiter=30, init.image=run20) # run 50 more
# VISUALIZE
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,3), pty="s")
image(dat2[[sample(100,1)]], axes=FALSE, main="a random image")
image(dat2[[sample(100,1)]], axes=FALSE, main="a random image")
image(dat2[[sample(100,1)]], axes=FALSE, main="a random image")
image(run10, axes=FALSE, main="barycenter after 10 iter")
image(run20, axes=FALSE, main="barycenter after 20 iter")
image(run50, axes=FALSE, main="barycenter after 50 iter")
par(opar)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.