View source: R/dist_sinkhorn.R
| sinkhorn | R Documentation |
To alleviate the computational burden of solving the exact optimal transport problem via linear programming,
Cuturi (2013) introduced an entropic regularization scheme that yields a smooth approximation to the
Wasserstein distance. Let C:=\|X_m - Y_n\|^p be the cost matrix, where X_m and Y_n are the observations from two distributions \mu and nu.
Then, the regularized problem adds a penalty term to the objective function:
W_{p,\lambda}^p(\mu, \nu) = \min_{\Gamma \in \Pi(\mu, \nu)} \langle \Gamma, C \rangle + \lambda \sum_{m,n} \Gamma_{m,n} \log (\Gamma_{m,n}),
where \lambda > 0 is the regularization parameter and \Gamma denotes a transport plan.
As \lambda \rightarrow 0, the regularized solution converges to the exact Wasserstein solution,
but small values of \lambda may cause numerical instability due to underflow.
In such cases, the implementation halts with an error; users are advised to increase \lambda
to maintain numerical stability.
sinkhorn(X, Y, p = 2, wx = NULL, wy = NULL, lambda = 0.1, ...)
sinkhornD(D, p = 2, wx = NULL, wy = NULL, lambda = 0.1, ...)
X |
an |
Y |
an |
p |
an exponent for the order of the distance (default: 2). |
wx |
a length- |
wy |
a length- |
lambda |
a regularization parameter (default: 0.1). |
... |
extra parameters including
|
D |
an |
a named list containing
\mathcal{W}_p distance value.
an (M\times N) nonnegative matrix for the optimal transport plan.
cuturi_2013_SinkhornDistancesLightspeedT4transport
#-------------------------------------------------------------------
# Wasserstein Distance between Samples from Two Bivariate Normal
#
# * class 1 : samples from Gaussian with mean=(-1, -1)
# * class 2 : samples from Gaussian with mean=(+1, +1)
#-------------------------------------------------------------------
## SMALL EXAMPLE
set.seed(100)
m = 20
n = 10
X = matrix(rnorm(m*2, mean=-1),ncol=2) # m obs. for X
Y = matrix(rnorm(n*2, mean=+1),ncol=2) # n obs. for Y
## COMPARE WITH WASSERSTEIN
outw = wasserstein(X, Y)
skh1 = sinkhorn(X, Y, lambda=0.05)
skh2 = sinkhorn(X, Y, lambda=0.25)
## VISUALIZE : SHOW THE PLAN AND DISTANCE
pm1 = paste0("Exact Wasserstein:\n distance=",round(outw$distance,2))
pm2 = paste0("Sinkhorn (lbd=0.05):\n distance=",round(skh1$distance,2))
pm5 = paste0("Sinkhorn (lbd=0.25):\n distance=",round(skh2$distance,2))
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3), pty="s")
image(outw$plan, axes=FALSE, main=pm1)
image(skh1$plan, axes=FALSE, main=pm2)
image(skh2$plan, axes=FALSE, main=pm5)
par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.