View source: R/dist_wass_sinkhorn.R
sinkhorn | R Documentation |
Due to high computational cost for linear programming approaches to compute
Wasserstein distance, \insertCitecuturi_sinkhorn_2013;textualT4transport proposed an entropic regularization
scheme as an efficient approximation to the original problem. This comes with
a regularization parameter \lambda > 0
in the term
\lambda h(\Gamma) = \lambda \sum_{m,n} \Gamma_{m,n} \log (\Gamma_{m,n}).
As \lambda\rightarrow 0
,
the solution to an approximation problem approaches to the solution of a
true problem. However, we have an issue with numerical underflow. Our
implementation returns an error when it happens, so please use a larger number
when necessary.
sinkhorn(X, Y, p = 2, wx = NULL, wy = NULL, lambda = 0.1, ...)
sinkhornD(D, p = 2, wx = NULL, wy = NULL, lambda = 0.1, ...)
X |
an |
Y |
an |
p |
an exponent for the order of the distance (default: 2). |
wx |
a length- |
wy |
a length- |
lambda |
a regularization parameter (default: 0.1). |
... |
extra parameters including
|
D |
an |
a named list containing
\mathcal{W}_p
distance value.
the number of iterations it took to converge.
an (M\times N)
nonnegative matrix for the optimal transport plan.
#-------------------------------------------------------------------
# Wasserstein Distance between Samples from Two Bivariate Normal
#
# * class 1 : samples from Gaussian with mean=(-1, -1)
# * class 2 : samples from Gaussian with mean=(+1, +1)
#-------------------------------------------------------------------
## SMALL EXAMPLE
set.seed(100)
m = 20
n = 10
X = matrix(rnorm(m*2, mean=-1),ncol=2) # m obs. for X
Y = matrix(rnorm(n*2, mean=+1),ncol=2) # n obs. for Y
## COMPARE WITH WASSERSTEIN
outw = wasserstein(X, Y)
skh1 = sinkhorn(X, Y, lambda=0.05)
skh2 = sinkhorn(X, Y, lambda=0.10)
## VISUALIZE : SHOW THE PLAN AND DISTANCE
pm1 = paste0("wasserstein plan ; distance=",round(outw$distance,2))
pm2 = paste0("sinkhorn lbd=0.05; distance=",round(skh1$distance,2))
pm5 = paste0("sinkhorn lbd=0.1 ; distance=",round(skh2$distance,2))
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
image(outw$plan, axes=FALSE, main=pm1)
image(skh1$plan, axes=FALSE, main=pm2)
image(skh2$plan, axes=FALSE, main=pm5)
par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.