Nothing
test_that("test the main functions (TPC)", {
library(TPCselect)
# parameter settings
#generate sample data
p = 200
n = 200
truebeta <- c(c(3,1.5,0,0,2),rep(0,p-5))
rho = 0.3
sigma = matrix(0,p+1,p+1)
for(i in 1:(p+1)){
for(j in 1:(p+1)){
sigma[i,j] = rho^(abs(i-j))
}
}
x_error = 0.9*MASS::mvrnorm(n,rep(0,p+1),sigma) + 0.1*MASS::mvrnorm(n,rep(0,p+1),9*sigma)
x = x_error[,1:p]
error = x_error[,p+1]
#u = runif(n)
y = x%*%truebeta + error
#perform variable selection via partial correlation
TPC.fit = TPC(y,x,0.05,1,method="threshold")
expect_equal(as.vector(TPC.fit$beta), truebeta, tolerance = 0.1)
})
test_that("test the main functions (TPC) with simple algorithm", {
library(TPCselect)
# parameter settings
#generate sample data
p = 200
n = 200
truebeta <- c(c(3,1.5,0,0,2),rep(0,p-5))
rho = 0.3
sigma = matrix(0,p+1,p+1)
for(i in 1:(p+1)){
for(j in 1:(p+1)){
sigma[i,j] = rho^(abs(i-j))
}
}
x_error = 0.9*MASS::mvrnorm(n,rep(0,p+1),sigma) + 0.1*MASS::mvrnorm(n,rep(0,p+1),9*sigma)
x = x_error[,1:p]
error = x_error[,p+1]
y = x%*%truebeta + error
#perform variable selection via partial correlation
TPC.fit = TPC(y,x,0.05,1,method="simple")
expect_equal(as.vector(TPC.fit$beta), truebeta, tolerance = 0.1)
})
test_that("test the main functions (TPC) if other algorithm", {
library(TPCselect)
# parameter settings
#generate sample data
p = 200
n = 200
truebeta <- c(c(3,1.5,0,0,2),rep(0,p-5))
rho = 0.3
sigma = matrix(0,p+1,p+1)
for(i in 1:(p+1)){
for(j in 1:(p+1)){
sigma[i,j] = rho^(abs(i-j))
}
}
x_error = 0.9*MASS::mvrnorm(n,rep(0,p+1),sigma) + 0.1*MASS::mvrnorm(n,rep(0,p+1),9*sigma)
x = x_error[,1:p]
error = x_error[,p+1]
y = x%*%truebeta + error
#perform variable selection via partial correlation
TPC.fit = TPC(y,x,0.05,100,method="other")
expect_equal(as.vector(TPC.fit$beta), truebeta, tolerance = 0.1)
})
test_that("test the main functions (TPC) with BIC", {
library(TPCselect)
# parameter settings
#generate sample data
p = 200
n = 200
truebeta <- c(c(3,1.5,0,0,2),rep(0,p-5))
rho = 0.3
sigma = matrix(0,p+1,p+1)
for(i in 1:(p+1)){
for(j in 1:(p+1)){
sigma[i,j] = rho^(abs(i-j))
}
}
x_error = 0.9*MASS::mvrnorm(n,rep(0,p+1),sigma) + 0.1*MASS::mvrnorm(n,rep(0,p+1),9*sigma)
x = x_error[,1:p]
error = x_error[,p+1]
y = x%*%truebeta + error
#perform variable selection via partial correlation
TPC.fit = TPC_BIC(y,x,c(0.05,0.1))
expect_equal(as.vector(TPC.fit$beta), truebeta, tolerance = 0.2)
})
test_that("test the main functions (TPC) with BIC CV", {
library(TPCselect)
# parameter settings
#generate sample data
p = 200
n = 200
truebeta <- c(c(3,1.5,0,0,2),rep(0,p-5))
rho = 0.3
sigma = matrix(0,p+1,p+1)
for(i in 1:(p+1)){
for(j in 1:(p+1)){
sigma[i,j] = rho^(abs(i-j))
}
}
x_error = 0.9*MASS::mvrnorm(n,rep(0,p+1),sigma) + 0.1*MASS::mvrnorm(n,rep(0,p+1),9*sigma)
x = x_error[,1:p]
error = x_error[,p+1]
y = x%*%truebeta + error
#perform variable selection via partial correlation
TPC.fit = TPC_BIC(y,x,c(0.05,0.1),c(0.5,1))
expect_equal(as.vector(TPC.fit$beta), truebeta, tolerance = 0.2)
})
test_that("test the main functions (TPC) with partial linear model", {
library(TPCselect)
#generate partial linear data
truebeta <- c(c(3,1.5,0,0,2),rep(0,30-5))
samples <- generate_toy_pldata()
y <- samples[[1]]
x <- samples[[2]]
times <- samples[[3]]
#perform variable selection via partial correlation
TPC.fit = TPC_pl(y,x,times,0.05,1,method="threshold")
expect_equal(as.vector(TPC.fit$beta), truebeta, tolerance = 0.2)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.