Nothing
library(TSP)
library(testthat)
context("solve_TSP")
m <- rbind(
c(0, 1, 0, 1),
c(1, 0, 1, Inf),
c(0, 1, 0, 1),
c(1, Inf, 1, 0)
)
d <- as.dist(m)
tsp <- TSP(d)
tsp
## from matrix should give the same result
expect_equal(as.numeric(tsp), as.numeric(TSP(as.matrix(d))))
## test error on NA
tsp_na <- tsp
tsp_na[4] <- NA
expect_error(o <- solve_TSP(tsp_na))
## test Inf
methods <- c("nearest_insertion", "cheapest_insertion", "farthest_insertion",
"arbitrary_insertion", "nn", "repetitive_nn", "two_opt", "random", "identity")
tours <- lapply(methods, FUN = function(m) solve_TSP(tsp, method = m))
names(tours) <- methods
#tours
tl <- sapply(tours, attr, "tour_length")
expect_true(all(tl == 4 | tl == Inf))
## test rep
res <- solve_TSP(tsp, rep=10)
tl <- attr("res", "tour_length")
expect_true(all(tl == 4 | tl == Inf))
## no two_opt
res <- solve_TSP(tsp, two_opt=FALSE)
tl <- attr("res", "tour_length")
expect_true(all(tl == 4 | tl == Inf))
## test special case: two cities
d <- dist(rbind(c(0,0), c(1,1)))
tsp2 <- TSP(d)
tours2 <- lapply(methods, FUN = function(m) solve_TSP(tsp2, method = m))
expect_true(all(sapply(tours2, attr, "tour_length") == as.numeric(d)*2))
## test special case: one city
tsp1 <- TSP(dist(1))
tours1 <- lapply(methods, FUN = function(m) solve_TSP(tsp1, method = m))
expect_true(all(sapply(tours1, attr, "tour_length") == 0))
## test ATSP (just for errors)
#data <- matrix(runif(5^2), ncol = 5, dimnames = list(1:5, 1:5))
data <- structure(c(0.13930352916941, 0.897691324818879, 0.509101516567171,
0.430898967897519, 0.141799068776891, 0.0334562903735787, 0.902805947931483,
0.203576791565865, 0.435874363640323, 0.0641707226168364, 0.101683554705232,
0.631239329231903, 0.555331876967102, 0.0829615572001785, 0.272443652851507,
0.215095571940765, 0.532841097796336, 0.795302660670131, 0.43256876245141,
0.582661165855825, 0.250269076088443, 0.164849652675912, 0.638499777996913,
0.857200765516609, 0.0134391817264259), .Dim = c(5L, 5L), .Dimnames = list(
c("1", "2", "3", "4", "5"), c("1", "2", "3", "4", "5")))
# best solution is 0.8082826
atsp <- ATSP(data)
methods <- c("nearest_insertion", "cheapest_insertion", "farthest_insertion",
"arbitrary_insertion", "nn", "repetitive_nn", "two_opt", "random", "identity")
tours <- lapply(methods, FUN = function(m) solve_TSP(atsp, method = m))
names(tours) <- methods
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.