Nothing
#
# TTR: Technical Trading Rules
#
# Copyright (C) 2007-2013 Joshua M. Ulrich
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
#' Stochastic Oscillator / Stochastic Momentum Index
#'
#' The stochastic oscillator is a momentum indicator that relates the location
#' of each day's close relative to the high/low range over the past \code{n}
#' periods. Developed by George C. Lane in the late 1950s. The SMI relates
#' the close to the midpoint of the high/low range. Developed by William Blau
#' in 1993.
#'
#' If a High-Low-Close series is provided, the indicator is calculated using the
#' high/low values. If a vector is provided, the calculation only uses that
#' series. This allows stochastics to be calculated for: (1) series that have
#' no HLC definition (e.g. foreign exchange), and (2) stochastic indicators
#' (e.g. stochastic RSI - see examples).
#'
#' The \code{smooth} argument is the number of periods of internal smoothing to
#' apply to the differences in the high-low-close range before calculating Fast
#' K. Thanks to Stanley Neo for the suggestion.
#'
#' @aliases stochastics stochastic stoch SMI %K %D
#' @param HLC Object that is coercible to xts or matrix and contains
#' High-Low-Close prices. If only a univariate series is given, it will be
#' used. See details.
#' @param n Number of periods to use.
#' @param nFastK Number of periods for fast \%K (i.e. the number of past periods
#' to use).
#' @param nFastD Number of periods for fast \%D (i.e. the number smoothing
#' periods to apply to fast \%K).
#' @param nSlowD Number of periods for slow \%D (i.e. the number smoothing
#' periods to apply to fast \%D).
#' @param smooth Number of internal smoothing periods to be applied before
#' calculating FastK. See Details.
#' @param nFast Number of periods for initial smoothing.
#' @param nSlow Number of periods for double smoothing.
#' @param nSig Number of periods for signal line.
#' @param maType Either:
#' \enumerate{
#' \item A function or a string naming the function to be called.
#' \item A \emph{list} with the first component like (1) above, and
#' additional parameters specified as \emph{named} components.
#' See Examples.
#' }
#' @param bounded Logical, should current period's values be used in the
#' calculation?
#' @param \dots Other arguments to be passed to the \code{maType} function in
#' case (1) above.
#' @return A object of the same class as \code{HLC} or a matrix (if
#' \code{try.xts} fails) containing the columns:
#' \describe{
#' \item{ fastK }{ Stochastic Fast \%K }
#' \item{ fastD }{ Stochastic Fast \%D }
#' \item{ slowD }{ Stochastic Slow \%D }
#' \item{ SMI }{ Stochastic Momentum Index }
#' \item{ signal }{ Stochastic Momentum Index signal line }
#' }
#' @note The calculation for William's \%R is similar to that of stochastics'
#' fast \%K.
#'
#' The value for fast \%K will be 0.5 whenever the highest high and
#' lowest low are the same over the last \code{n} periods.
#'
#' The stochastic oscillator and SMI calculate relative value of the close
#' versus the high/low range and the midpoint of the high/low range,
#' respectively.
#'
#' The stochastic oscillator and the stochastic momentum index are interpreted
#' similarly. Readings below 20 (above 80) are considered oversold
#' (overbought). However, readings below 20 (above 80) are not necessarily
#' bearish (bullish). Lane believed some of the best sell (buy) signals
#' occurred when the oscillator moved from overbought (oversold) back below 80
#' (above 20).
#'
#' For the stochastic oscillator, buy (sell) signals can also be given when \%K
#' crosses above (below) \%D. Crossover signals are quite frequent however,
#' which may result in whipsaws.
#' @author Joshua Ulrich
#' @seealso See \code{\link{EMA}}, \code{\link{SMA}}, etc. for moving average
#' options; and note Warning section. See \code{\link{WPR}} to compare it's
#' results to fast \%K.
#' @references The following site(s) were used to code/document these
#' indicators:
#' \cr Stochastic Oscillator:\cr
#' \url{https://www.fmlabs.com/reference/StochasticOscillator.htm}\cr
#' \url{https://www.metastock.com/Customer/Resources/TAAZ/?p=106}\cr
#' \url{https://www.linnsoft.com/techind/stochastics}\cr
#' \url{https://school.stockcharts.com/doku.php?id=technical_indicators:stochastic_oscillator_fast_slow_and_full}\cr
#' \cr SMI:\cr
#' \url{https://www.fmlabs.com/reference/default.htm?url=SMI.htm}\cr
#' @keywords ts
#' @examples
#'
#' data(ttrc)
#' stochOSC <- stoch(ttrc[,c("High","Low","Close")])
#' stochWPR <- WPR(ttrc[,c("High","Low","Close")])
#'
#' plot(tail(stochOSC[,"fastK"], 100), type="l",
#' main="Fast %K and Williams %R", ylab="",
#' ylim=range(cbind(stochOSC, stochWPR), na.rm=TRUE) )
#' lines(tail(stochWPR, 100), col="blue")
#' lines(tail(1-stochWPR, 100), col="red", lty="dashed")
#'
#' stoch2MA <- stoch( ttrc[,c("High","Low","Close")],
#' maType=list(list(SMA), list(EMA, wilder=TRUE), list(SMA)) )
#'
#' SMI3MA <- SMI(ttrc[,c("High","Low","Close")],
#' maType=list(list(SMA), list(EMA, wilder=TRUE), list(SMA)) )
#'
#' stochRSI <- stoch( RSI(ttrc[,"Close"]) )
#' @rdname stochastics
"stoch" <-
function(HLC, nFastK=14, nFastD=3, nSlowD=3, maType, bounded=TRUE, smooth=1, ...) {
# Stochastics
HLC <- try.xts(HLC, error=as.matrix)
# Calculation if HLC series is given
if(NCOL(HLC)==3) {
high <- HLC[,1]
low <- HLC[,2]
close <- HLC[,3]
} else
# Calculation if price vector is given
if(NCOL(HLC)==1) {
high <- HLC
low <- HLC
close <- HLC
} else
stop("Price series must be either High-Low-Close, or Close")
if(bounded) {
hmax <- runMax(high, nFastK)
lmin <- runMin( low, nFastK)
} else {
hmax <- runMax(c(high[1],high[-NROW(HLC)]), nFastK)
lmin <- runMin(c( low[1], low[-NROW(HLC)]), nFastK)
}
num <- close - lmin
den <- hmax - lmin
if(missing(maType)) {
maType <- 'SMA'
}
# Case of two different 'maType's for both MAs.
# e.g. stoch(price, 14, 3, 3,
# maType=list(maUp=list(EMA,ratio=1/5), maDown=list(WMA,wts=1:10)) )
if( is.list(maType) ) {
# Make sure maType is a list of lists
maTypeInfo <- sapply(maType,is.list)
if( !(all(maTypeInfo) && length(maTypeInfo) == 3) ) {
stop("If \'maType\' is a list, you must specify\n ",
"*three* MAs (see Examples section of ?stochastics)")
}
# If MA function has 'n' arg, see if it's populated in maType;
# if it isn't, populate it with function's formal 'n'
if( !is.null( formals(maType[[1]][[1]])$n ) && is.null( maType[[1]]$n ) ) {
maType[[1]]$n <- nFastD
}
if( !is.null( formals(maType[[2]][[1]])$n ) && is.null( maType[[2]]$n ) ) {
maType[[2]]$n <- nSlowD
}
if( !is.null( formals(maType[[3]][[1]])$n ) && is.null( maType[[3]]$n ) ) {
maType[[3]]$n <- smooth
}
numMA <- do.call( maType[[3]][[1]], c( list(num), maType[[3]][-1] ) )
denMA <- do.call( maType[[3]][[1]], c( list(den), maType[[3]][-1] ) )
fastK <- numMA / denMA
fastK[!is.finite(fastK) & !is.na(fastK)] <- 0.5
fastD <- do.call( maType[[1]][[1]], c( list(fastK), maType[[1]][-1] ) )
slowD <- do.call( maType[[2]][[1]], c( list(fastD), maType[[2]][-1] ) )
}
# Case of one 'maType' for both MAs.
# e.g. stoch(price, 14, 3, 3, maType="WMA", wts=volume )
else {
numMA <- do.call( maType, c( list(num), list(n=smooth) ) )
denMA <- do.call( maType, c( list(den), list(n=smooth) ) )
fastK <- numMA / denMA
fastK[!is.finite(fastK) & !is.na(fastK)] <- 0.5
fastD <- do.call( maType, c( list(fastK), list(n=nFastD, ...) ) )
slowD <- do.call( maType, c( list(fastD), list(n=nSlowD, ...) ) )
}
result <- cbind( fastK, fastD, slowD )
colnames(result) <- c( "fastK", "fastD", "slowD" )
reclass(result, HLC)
}
#-------------------------------------------------------------------------#
#' @rdname stochastics
"SMI" <-
function(HLC, n=13, nFast=2, nSlow=25, nSig=9, maType, bounded=TRUE, ...) {
# Stochastic Momentum Index
# Not Validated
# http://www.fmlabs.com/reference/default.htm?url=SMI.htm
# The median in the SMI formula on the above site is incorrect.
# Calculation if HLC series is given
if(ncol(HLC)==3) {
high <- HLC[,1]
low <- HLC[,2]
close <- HLC[,3]
} else
# Calculation if price vector is given
if(ncol(HLC)==1) {
high <- HLC
low <- HLC
close <- HLC
} else
stop("Price series must be either High-Low-Close, or Close")
if(bounded) {
hmax <- runMax(high, n)
lmin <- runMin( low, n)
} else {
hmax <- runMax(c(high[1],high[-NROW(HLC)]), n)
lmin <- runMax(c( low[1], low[-NROW(HLC)]), n)
}
hmax <- ifelse( is.na(hmax), high, hmax )
lmin <- ifelse( is.na(lmin), low, lmin )
HLdiff <- hmax - lmin
Cdiff <- close - ( hmax + lmin ) / 2
if(missing(maType)) {
maType <- 'EMA'
}
# Case of two different 'maType's for both MAs.
# e.g. SMI(price, 13, 2, 25, 9,
# maType=list(maUp=list(EMA,ratio=1/5), maDown=list(WMA,wts=1:10)) )
if( is.list(maType) ) {
# Make sure maType is a list of lists
maTypeInfo <- sapply(maType,is.list)
if( !(all(maTypeInfo) && length(maTypeInfo) == 3) ) {
stop("If \'maType\' is a list, you must specify\n ",
"*three* MAs (see Examples section of ?SMI)")
}
# If MA function has 'n' arg, see if it's populated in maType;
# if it isn't, populate it with function's formal 'n'
if( !is.null( formals(maType[[1]][[1]])$n ) && is.null( maType[[1]]$n ) ) {
maType[[1]]$n <- nFast
}
if( !is.null( formals(maType[[2]][[1]])$n ) && is.null( maType[[2]]$n ) ) {
maType[[2]]$n <- nSlow
}
if( !is.null( formals(maType[[3]][[1]])$n ) && is.null( maType[[3]]$n ) ) {
maType[[3]]$n <- nSig
}
num1 <- do.call( maType[[1]][[1]], c( list(Cdiff ), maType[[1]][-1] ) )
den1 <- do.call( maType[[1]][[1]], c( list(HLdiff), maType[[1]][-1] ) )
num2 <- do.call( maType[[2]][[1]], c( list( num1 ), maType[[2]][-1] ) )
den2 <- do.call( maType[[2]][[1]], c( list( den1 ), maType[[2]][-1] ) )
SMI <- 100 * ( num2 / ( den2 / 2 ) )
signal <- do.call( maType[[3]][[1]], c( list(SMI), maType[[3]][-1] ) )
}
# Case of one 'maType' for both MAs.
# e.g. SMI(price, 13, 2, 25, 9, maType="WMA", wts=volume )
else {
num1 <- do.call( maType, c( list(Cdiff ), list(n=nSlow, ... ) ) )
den1 <- do.call( maType, c( list(HLdiff), list(n=nSlow, ... ) ) )
num2 <- do.call( maType, c( list( num1 ), list(n=nFast, ... ) ) )
den2 <- do.call( maType, c( list( den1 ), list(n=nFast, ... ) ) )
SMI <- 100 * ( num2 / ( den2 / 2 ) )
signal <- do.call( maType, c( list(SMI), list(n=nSig, ... ) ) )
}
result <- cbind( SMI, signal )
colnames(result) <- c( "SMI", "signal" )
reclass( result, HLC )
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.