Nothing
#' Predictive mean matching (PMM)
#' @description This function imputes for all missing responses using predictive mean matching.
#' The mice () function with default settings from the mice package (Van Buuren & Groothuis-Oudshoorn, 2011
#' <doi: 10.18637/jss.v045.i03>) is used to impute for the missing responses.
#' @param test.data Test data set (a data frame or a matrix) containing missing responses.
#' Missing values are coded as NA or other values (e.g., 8, 9).
#' @param Mvalue Missing response indicators in the data (e.g. "NA", "8", "9", etc.). Mvalue="NA" by default.
#' @return A data frame with all missing responses replaced by integrated imputed values.
#' @import stats
#' @importFrom mice mice complete
#' @examples
#' micePMM(test.data, Mvalue="NA")
#' @export
#' @references {
#' Van Buuren, S., & Groothuis-Oudshoorn, K. (2011).
#' "mice: Multivariate imputation by chained equations in R."
#' Journal of statistical software, 45(1), 1-67. DOI: 10.18637/jss.v045.i03.
#' }
micePMM<-function (test.data, Mvalue="NA") {
if (Mvalue == "NA") {
test.data[] <- lapply(test.data, factor)
pmm.out <- mice::mice(test.data, m=1, method="pmm")
} else {test.data[test.data==Mvalue]<-NA
test.data[] <- lapply(test.data, factor)
pmm.out <- mice::mice(test.data, m=1, method="pmm")
}
dataout<-as.data.frame(mice::complete(pmm.out))
test.data<-as.data.frame(dataout)
return(test.data)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.