Nothing
Thetaest.admm = function(S.hat.A, deltaI, lam2, Omega.hat0,
max_iter=10, eps=1e-3, kappa = 1){
# Thetaest.cd: the function estimating transfer learning-based estimator of
# precision matrix of the mode corresponding to S.hat.A, via
# ADMM algorithm.
p = dim(S.hat.A)[1]
SI = S.hat.A+kappa*diag(p)
Theta_hat = Omega.hat0
for (j in 1:p){
thetaj = Omega.hat0[,j]
v = thetaj
ej = rep(1,p)
ej[j] = 0
gamma = rep(0,p)
iter = 0
diff = 10
while(iter < max_iter && diff > eps){
thetaj0 = thetaj
thetaj = as.numeric(solve(SI) %*% ( deltaI[,j] + gamma + kappa*v ))
v = S_soft.vec(thetaj - gamma/kappa, lam2, ej)
gamma = gamma + kappa * ( v - thetaj )
diff = sqrt( sum((thetaj - thetaj0)^2) / p )
iter = iter + 1
}
Theta_hat[,j] = v
}
return(Theta_hat)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.