tlsInventory: Extract forest inventory metrics from a point cloud

Description Usage Arguments Examples

Description

Estimation of diameter and height tree-wise for normalized point clouds with assigned stem points.

Usage

1
2
3
4
5
6
7
tlsInventory(
  las,
  dh = 1.3,
  dw = 0.5,
  hp = 1,
  d_method = shapeFit(shape = "circle", algorithm = "ransac", n = 15, n_best = 20)
)

Arguments

las

LAS object.

dh

numeric - height layer (above ground) to estimate stem diameters, in point cloud units.

dw

numeric - height layer width, in point cloud units.

hp

numeric - height percentile to extract per tree (0-1). Use 1 for top height, i.e. the highest point.

d_method

parameterized shapeFit function, i.e. method to use for diameter estimation.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
file = system.file("extdata", "pine_plot.laz", package="TreeLS")
tls = readTLS(file) %>%
  tlsNormalize %>%
  tlsSample

map = treeMap(tls, map.hough())
tls = treePoints(tls, map, trp.crop(circle=FALSE))
tls = stemPoints(tls, stm.hough())

dmt = shapeFit(shape = 'circle', algorithm='ransac', n=20)
inv = tlsInventory(tls, d_method = dmt)
tlsPlot(tls, inv)

TreeLS documentation built on Aug. 26, 2020, 5:14 p.m.