Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
message = FALSE,
warning = FALSE,
error = FALSE
)
options(digits = 2)
## ----setup--------------------------------------------------------------------
library(TriMatch)
data("tutoring")
data("nmes")
## -----------------------------------------------------------------------------
names(tutoring)
## -----------------------------------------------------------------------------
table(tutoring$treat, tutoring$Course, useNA="ifany")
## -----------------------------------------------------------------------------
formu <- ~ Gender + Ethnicity + Military + ESL + EdMother + EdFather +
Age + Employment + Income + Transfer + GPA
tutoring.tpsa <- trips(tutoring, tutoring$treat, formu)
## -----------------------------------------------------------------------------
plot(tutoring.tpsa)
## -----------------------------------------------------------------------------
tutoring.matched <- trimatch(tutoring.tpsa, exact=tutoring[,c("Course")])
## -----------------------------------------------------------------------------
tutoring.matched.caliper <- trimatch(tutoring.tpsa,
exact=tutoring[,c("Course")], method=NULL)
## -----------------------------------------------------------------------------
tutoring.matched.2to1 <- trimatch(tutoring.tpsa,
exact=tutoring[,c("Course")], method=OneToN, M1=2, M2=1)
tutoring.matched.3to2 <- trimatch(tutoring.tpsa,
exact=tutoring[,c("Course")],
method=OneToN, M1=3, M2=2)
## ----triangleplot, fig.cap = 'Traingle Plot'----------------------------------
print(plot(tutoring.matched, rows=c(50), line.alpha=1, draw.segments=TRUE))
## -----------------------------------------------------------------------------
summary(unmatched(tutoring.matched))
## -----------------------------------------------------------------------------
summary(unmatched(tutoring.matched.caliper))
## -----------------------------------------------------------------------------
summary(unmatched(tutoring.matched.2to1))
## -----------------------------------------------------------------------------
summary(unmatched(tutoring.matched.3to2))
## ----multibalance, fig.cap = 'Multiple Covariate Balance Plot of Absolute Standardized Effect Sizes Before and After Propensity Score Adjustment'----
print(multibalance.plot(tutoring.tpsa) + ggtitle("Covariate Balance Plot"))
## ----balance, fig.cap = 'Covariate Balance Plots', cache = TRUE---------------
bplots <- balance.plot(tutoring.matched, tutoring[,all.vars(formu)],
legend.position="none", x.axis.labels=c("C","T1","T1"), x.axis.angle=0)
print(plot(bplots, cols=3, byrow=FALSE))
## -----------------------------------------------------------------------------
matched.out <- merge(tutoring.matched, tutoring$Grade)
names(matched.out)
head(matched.out)
## -----------------------------------------------------------------------------
s1 <- summary(tutoring.matched, tutoring$Grade)
names(s1)
s1$friedman.test
s1$t.tests
## -----------------------------------------------------------------------------
s2 <- summary(tutoring.matched.caliper, tutoring$Grade)
s3 <- summary(tutoring.matched.2to1, tutoring$Grade)
s4 <- summary(tutoring.matched.3to2, tutoring$Grade)
print("Max Treat"=s1, "Caliper"=s2, "2-to-1"=s3, "3-to-2"=s4)
## ----boxplots, fig.cap = 'Boxplot of Differences', fig.show = 'hold', out.width = '30%'----
boxdiff.plot(tutoring.matched, tutoring$Grade,
ordering=c("Treat2","Treat1","Control")) +
ggtitle("Maximum Treatment Matching")
boxdiff.plot(tutoring.matched.caliper, tutoring$Grade,
ordering=c("Treat2","Treat1","Control")) +
ggtitle("Caliper Matching")
boxdiff.plot(tutoring.matched.2to1, tutoring$Grade,
ordering=c("Treat2","Treat1","Control")) +
ggtitle("2-to-1-to-n Matching")
## ----loess, fig.cap = 'Loess Plot for Caliper Matching'-----------------------
loess3.plot(tutoring.matched.caliper, tutoring$Grade, ylab="Grade",
points.alpha=.1, method="loess")
## -----------------------------------------------------------------------------
data(nmes)
nmes <- subset(nmes, select = c(packyears, smoke, LASTAGE, MALE, RACE3, beltuse, educate, marital, SREGION, POVSTALB, HSQACCWT, TOTALEXP))
## -----------------------------------------------------------------------------
nmes <- na.omit(nmes)
## -----------------------------------------------------------------------------
nmes$smoke <- factor(nmes$smoke, levels=c(0,1,2), labels=c("Never","Smoker","Former"))
nmes$LogTotalExp <- log(nmes$TOTALEXP + 1)
(medPY <- median(nmes[nmes$smoke != "Never",]$packyears))
table(nmes$smoke, nmes$packyears > medPY)
nmes$smoke2 <- ifelse(nmes$smoke == "Never", "Never",
ifelse(nmes$packyears > 17, "Heavy", "Moderate"))
table(nmes$smoke, nmes$smoke2, useNA="ifany")
## ----packyearsAndTotalExp, fig.cap = 'Relationship Between Pack Year and Total Expenditures by Current Smoking Status', fig.show = 'hold', out.width = '50%'----
ggplot(nmes[nmes$smoke != "Never",], aes(x=log(packyears+1), color=smoke, fill=smoke)) +
geom_density(alpha=.1) +
theme(legend.position="none", plot.margin=rep(unit(0, "cm"), 4)) +
xlab("") + ylab("Density")
ggplot(nmes[nmes$smoke != "Never",], aes(x=log(packyears+1), y=LogTotalExp, color=smoke, fill=smoke)) +
geom_point(alpha=.2) +
geom_smooth(method="loess", formula = y ~ x) +
scale_color_hue("") + scale_fill_hue("") +
theme(legend.position=c(.9,1), plot.margin=rep(unit(0, "cm"), 4)) +
xlab("log(Pack Year)") + ylab("log(Total Expenditures)")
## -----------------------------------------------------------------------------
nmes$LastAge5 <- cut(nmes$LASTAGE,
breaks=quantile(nmes$LASTAGE, probs=seq(0,1,1/5)),
include.lowest=TRUE, orderd_result=TRUE)
## -----------------------------------------------------------------------------
formu <- ~ LASTAGE + MALE + RACE3 + beltuse + educate + marital +
SREGION + POVSTALB
## -----------------------------------------------------------------------------
tpsa.smoke <- trips(nmes, nmes$smoke, formu)
tpsa.packyears <- trips(nmes, nmes$smoke2, formu)
## ----nmestriangleplot, fig.cap = 'Triangle Plots for NMES', fig.show = 'hold', out.width = '50%'----
p.smoke <- plot(tpsa.smoke, sample=c(.05), edge.alpha=.1) + ggtitle("Treatment Variable: Current Smoking Status")
p.packyears <- plot(tpsa.packyears, sample=c(.05), edge.alpha=.1) + ggtitle("Treatment Variable: Lifetime Smoking Frequency")
p.smoke
p.packyears
## ----cache = TRUE-------------------------------------------------------------
tmatch.smoke <- trimatch(tpsa.smoke,
exact=nmes[,c("LastAge5","MALE","RACE3")])
tmatch.packyears <- trimatch(tpsa.packyears,
exact=nmes[,c("LastAge5","MALE","RACE3")])
## -----------------------------------------------------------------------------
summary(unmatched(tmatch.smoke))
summary(unmatched(tmatch.packyears))
## ----nmesbalance, fig.cap = 'Multiple Covariate Balance Plots for NMES', fig.show = 'hold', out.width = '50%'----
p.smoke <- multibalance.plot(tpsa.smoke) + ggtitle("Treatment Variable: Current Smoking Status")
p.packyears <- multibalance.plot(tpsa.packyears) + ggtitle("Treatment Variable: Lifetime Smoking Frequency")
p.smoke
p.packyears
## ----nmesboxplots, fig.cap = 'Boxplot of Differences for NMES', fig.show = 'hold', out.width = '50%'----
boxdiff.plot(tmatch.smoke, nmes$LogTotalExp, ordering=c("Smoker","Former","Never")) +
ggtitle("Treatment Variable: Current Smoking Status")
boxdiff.plot(tmatch.packyears, nmes$LogTotalExp, ordering=c("Heavy","Moderate","Never")) +
ggtitle("Treatment Variable: Lifetime Smoking Frequency")
## -----------------------------------------------------------------------------
sum.smoke <- summary(tmatch.smoke, nmes$LogTotalExp,
ordering=c("Smoker","Former","Never"))
sum.packyears <- summary(tmatch.packyears, nmes$LogTotalExp,
ordering=c("Heavy","Moderate","Never"))
print("Current Smoking Status" = sum.smoke, "Smoking Frequency" = sum.packyears)
## -----------------------------------------------------------------------------
sum.smoke$t.tests
sum.packyears$t.test
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.