Nothing
#' Predict gillnet selectivity (old Millar method)
#'
#' @param type ("norm.loc", "norm.sca", "gamma", "lognorm")
#' @param meshsizes mesh sizes
#' @param rel relative powers (one for each mesh size)
#' @param pars selection curve parameters
#' @param plotlens vector of new mesh sizes for selectivity prediction
#'
#' @source https://www.stat.auckland.ac.nz/~millar/selectware/
#'
#' @references
#' Millar, R. B., Holst, R., 1997. Estimation of gillnet and hook selectivity
#' using log-linear models. \emph{ICES Journal of Marine Science: Journal du Conseil},
#' 54(3):471-477
#'
#' @return selectivities
rcurves_Millar <- function(type, meshsizes, rel, pars, plotlens){
# Adapted R code from Russell Millar (https://www.stat.auckland.ac.nz/~millar/selectware/)
lens <- rep(plotlens,length(meshsizes))
relsizes <- meshsizes/meshsizes[1]
if(is.null(rel)){
releff <- 1
}else releff <- rep(rel,rep(length(plotlens),length(meshsizes)))
msizes <- rep(meshsizes,rep(length(plotlens),length(meshsizes)))
relsizes <- rep(relsizes,rep(length(plotlens),length(relsizes)))
switch(type,
"norm.loc"={ k=pars[1]; mean1=pars[3]; sigma=pars[2]
rselect <- exp(-((lens-k*msizes)^2)/(2*sigma^2)) },
"norm.sca"={ k1=pars[1]; k2=pars[2]
rselect <- exp(-((lens-k1*msizes)^2)/(2*k2*msizes^2)) },
"gamma"={ alpha=pars[1]; k=pars[2]
rselect <- (lens/((alpha-1)*k*msizes))^(alpha-1)*exp(alpha-1-lens/(k*msizes)) },
"lognorm"={ mu1=pars[1]; sigma=pars[2]
rselect <- (1/lens)*exp(mu1+log(relsizes)-sigma^2/2-
(log(lens)-mu1-log(relsizes))^2/(2*sigma^2)) }
)
rselect <- releff*rselect/max(releff)
rselect <- matrix(rselect,ncol=length(meshsizes))
return(rselect)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.