Nothing
## --##--##--##--##--##--##--##--##--##--##--##--##--##--##--##
## Functions related to the inverse gaussian distribution ##
## --##--##--##--##--##--##--##--##--##--##--##--##--##--##--##
#' @param m vector of means
#' @param s vector of dispersion parameters
#' @rdname rtrunc
#' @export
rtruncinvgauss <- function(n, m, s, a = 0, b = Inf, faster = FALSE) {
class(n) <- "trunc_invgauss"
if (faster) {
family <- gsub("trunc_", "", class(n))
parms <- mget(ls())[grep("^faster$|^n$|^family$", ls(), invert = TRUE)]
return(rtrunc_direct(n, family, parms, a, b))
} else {
parms <- mget(ls())[grep("^faster$", ls(), invert = TRUE)]
return(sampleFromTruncated(parms))
}
}
rtrunc.invgauss <- rtruncinvgauss
#' @export
dtrunc.trunc_invgauss <- function(y, m, s, eta, a = 0, b = Inf, ...) {
if (missing(eta)) {
eta <- parameters2natural.parms_invgauss(c("m" = m, "s" = s))
}
parm <- natural2parameters.parms_invgauss(eta)
dens <- rescaledDensities(y, a, b, dinvgauss, pinvgauss, parm["m"], parm["s"])
return(dens)
}
#' @rdname dtrunc
#' @export
dtruncinvgauss <- dtrunc.trunc_invgauss
#' @export
empiricalParameters.trunc_invgauss <- function(y, ...) {
# Returns empirical parameter estimates mean and shape
mean <- mean(y)
sd <- sd(y)
lambda <- mean ^ 3 / sd ^ 2
parms <- c(m = mean, s = 1 / lambda)
class(parms) <- "parms_invgauss"
parms
}
#' @method sufficientT trunc_invgauss
sufficientT.trunc_invgauss <- function(y) {
cbind(y, 1 / y)
}
#' @export
parameters2natural.parms_invgauss <- function(parms, ...) {
# parms: The parameters mean and shape in a normal distribution
# returns the natural parameters
mu <- parms[["m"]]
lambda <- 1 / parms[["s"]]
eta <- c(eta1 = -lambda / (2 * mu ^ 2), eta2 = -lambda / 2)
class(eta) <- class(parms)
eta
}
#' @export
natural2parameters.parms_invgauss <- function(eta, ...) {
# eta: The natural parameters in an inverse gaussian distribution
# returns (mean,shape)
if (length(eta) != 2) stop("Eta must be a vector of two elements")
mu <- sqrt(eta[[2]] / eta[[1]])
lambda <- -2 * eta[[2]]
parms <- c(m = mu, s = 1 / lambda)
class(parms) <- class(eta)
parms
}
#' @method getYseq trunc_invgauss
getYseq.trunc_invgauss <- function(y, y.min, y.max, n = 100) {
m <- mean(y, na.rm = TRUE)
sd <- sd(y, na.rm = TRUE)
lo <- max(0, y.min, m - 3.5 * sd)
hi <- min(y.max, m + 3.5 * sd)
out <- seq(lo, hi, length = n)
out <- out[out > 0] # y must be positive
class(out) <- class(y)
return(out)
}
#' @method getGradETinv parms_invgauss
getGradETinv.parms_invgauss <- function(eta, ...) {
# eta: Natural parameter
# return the inverse of E.T differentiated with respect to eta' : p x p matrix
mx_11 <- -sqrt(eta[2] / eta[1] ^ 3)
mx_12 <- 1 / (sqrt(eta[1] * eta[2]))
mx_21 <- mx_12
mx_22 <- (1 - eta[1] * sqrt(eta[2] / eta[1])) / (eta[2] ^ 2)
A_inv <- 0.5 * matrix(c(mx_11, mx_12, mx_21, mx_22), ncol = 2)
A <- solve(A_inv)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.