Nothing
## --##--##--##--##--##--##--##--##--##--##--##--##--##--##--##--##
## Functions related to the Negative Binomial distribution ##
## --##--##--##--##--##--##--##--##--##--##--##--##--##--##--##--##
#' @param size target for number of successful trials,
#' or dispersion parameter (the shape parameter of the gamma mixing
#' distribution). Must be strictly positive, need not be integer.
#' @param prob probability of success on each trial
#' @param mu alternative parametrization via mean
#' @rdname rtrunc
#' @export
rtruncnbinom <- function(n, size, prob, mu, a = 0, b = Inf, faster = FALSE) {
class(n) <- "trunc_nbinom"
if (missing(prob)) {
prob <- (size) / (size + mu)
mu <- ""
}
if (faster) {
family <- gsub("trunc_", "", class(n))
parms <- mget(ls())[grep("^faster$|^n$|^family$|^mu$", ls(), invert = TRUE)]
return(rtrunc_direct(n, family, parms, a, b))
} else {
parms <- mget(ls())[grep("^faster$", ls(), invert = TRUE)]
return(sampleFromTruncated(parms))
}
}
rtrunc.nbinom <- rtruncnbinom
#' @rdname dtrunc
#' @param ... size
#' @export
dtrunc.trunc_nbinom <- function(
y, size, prob, eta, a = 0, b = Inf, ...
) {
if (missing(eta)) {
eta <- parameters2natural.parms_nbinom(c("size" = size, "prob" = prob))
}
nsize <- attr(y, "parameters")$size
proba <- attr(y, "parameters")$prob
dens <- rescaledDensities(y, a, b, dnbinom, pnbinom, nsize, proba)
return(dens)
}
#' @rdname dtrunc
#' @param ... size
#' @export
dtruncnbinom <- dtrunc.trunc_nbinom
#' @export
#' @rdname dtrunc
dtruncnbinom <- dtrunc.trunc_nbinom
#' @export
empiricalParameters.trunc_nbinom <- function(y, r, k, ...) {
# Returns empirical parameter estimate for lambda
if (missing(r) || missing(k)) {
parms <- c("mean" = mean(y))
} else {
parms <- c("size" = r, "prob" = (r - 1) / (r + k - 1))
}
class(parms) <- "parms_nbinom"
parms
}
#' @method sufficientT trunc_nbinom
sufficientT.trunc_nbinom <- function(y) {
suff.T <- y
}
#' @export
natural2parameters.parms_nbinom <- function(eta, ...) {
# eta: The natural parameters in a negative binomial distribution
p <- c(mean = exp(eta))
class(p) <- class(eta)
p
}
#' @export
parameters2natural.parms_nbinom <- function(parms, ...) {
# parms: The p parameter in a negative binomial distribution
# returns the natural parameters
if (all(names(parms) == c("size", "prob"))) {
mean <- parms[["size"]] * (1 - parms[["prob"]]) / parms[["prob"]]
} else {
mean <- parms[["mean"]]
}
eta <- prepEta(log(mean), class(parms))
}
#' @method getGradETinv parms_nbinom
getGradETinv.parms_nbinom <- function(eta, r = 1e3, ...) {
# eta: Natural parameter
# return the inverse of E.T differentiated with respect to eta
p <- exp(eta)
r <- exp(r)
A <- (1 - p) ^ 2 / (r * p)
return(A)
}
#' @method getYseq trunc_nbinom
getYseq.trunc_nbinom <- function(y, y.min = 0, y.max, n = 100) {
mean <- mean(y, na.rm = TRUE)
var.y <- var(y, na.rm = TRUE)
lo <- max(round(y.min), 0)
hi <- min(y.max, round(mean + 10 * sqrt(var.y)))
out <- seq(lo, hi)
attributes(out) <- attributes(y)
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.