surv_data_simulation: Simulate Survival Data

Description Usage Arguments Examples

View source: R/utility_functions.R

Description

Simulate survival data given design matrix and covariates (betas).

Usage

1
2
surv_data_simulation(lambda,gamma,x,betas=NULL, dropoutrate=0,
gammac=1,censordist='exponential',timeinterval=NULL,trt_timeinterval=NULL)

Arguments

lambda

lambda for event hazard function

gamma

gamma for event hazard function

x

design matrix

betas

coefficients for the covariates. The length of betas should be the same of number of columns of x

dropoutrate

Patient dropout rate with range [0,1). If dropoutrate contains only one number. The program will control the dropout rate at population level(treatment + control). If dropoutrate contains two numbers (ie. c(0.2,0.1)), the program will control the dropout rate of control and treatment arm seperately, with the first dropout rate number for control and the second number for treatment. Default value is "0" (no dropout)

gammac

gamma for censor hazard function. Default is 1 (exponential)

censordist

censor hazard distribution. Default is exponential

timeinterval

time intervals if the baseline hazard function is piecewise.

trt_timeinterval

Time windows for piecewise hazard ratios

Examples

1
2
3
4
5
N<-400
x<-data.frame(arm=rbinom(N,1,0.5), factor1=rbinom(N,1,0.7), factor2=rbinom(N,1,0.8))
betas<-c(arm=-0.35667,factor1=0.3,factor2=-0.1)

data<-surv_data_simulation(lambda=0.2,gamma=2,x=x,betas=betas,dropoutrate=0.2)

TwoArmSurvSim documentation built on Feb. 26, 2021, 9:06 a.m.