Nothing
## ===================================================
## Creating a new training sample for classification problems
# based on the relevance assigned to each class to perform
# both random over and under-sampling
#
# Examples:
# ir <- iris[-c(51:70,111:150), ]
# IS.ext <- WERCSClassif(Species~., ir, C.perc = "extreme")
# IS.bal <- WERCSClassif(Species~., ir, C.perc = "balance")
# myIS <- WERCSClassif(Species~., ir,
# C.perc = list(setosa = 0.2,
# versicolor = 2,
# virginica = 6))
# P. Branco, July 2015 Apr 2016
# P. Branco, Nov 2018
# ---------------------------------------------------
WERCSClassif <- function(form, dat, C.perc = "balance")
# Args:
# form a model formula
# dat the original training set (with the unbalanced distribution)
# C.perc is a list containing the percentage of under- or/and
# over-sampling to apply to each "class" obtained with the
# threshold. To use this list, a thr.rel must be provided otherwise
# this parameter is ignored.
# The over-sampling percentage means that the examples above the
# threshold are increased by this percentage. The under-sampling
# percentage means that the normal cases (cases below the threshold)
# are under-sampled by this percentage. Alternatively it may be
# "balance" (the default) or "extreme", cases where the sampling
# percentages are automatically estimated.
#
# Returns: a data frame with the data modified through the Importance
# Sampling strategy.
{
# the column where the target variable is
tgt <- which(names(dat) == as.character(form[[2]]))
names <- sort(unique(dat[, tgt]))
li <- class.freq(dat, tgt)
if (is.list(C.perc)) {
names.und <- names(which(C.perc < 1))
names.ove <- names(which(C.perc > 1))
names.same <- setdiff(names, union(names.und, names.ove))
# include examples from classes unchanged
newdata <- dat[which(dat[, tgt] %in% names.same), ]
if (length(names.und)) { # perform under-sampling
for (i in 1:length(names.und)) {
Exs <- which(dat[, tgt] == names.und[i])
sel <- sample(Exs,
as.integer(C.perc[[names.und[i]]] * length(Exs)),
replace = FALSE)
newdata <- rbind(newdata, dat[sel, ])
}
}
if (length(names.ove)) { # perform over-sampling
for (i in 1:length(names.ove)) {
Exs <- which(dat[, tgt] == names.ove[i])
if (length(Exs) == 1) {
sel <- rep(Exs, C.perc[[names.ove[i]]])
} else {
sel <- sample(Exs,
as.integer(C.perc[[names.ove[i]]] * length(Exs)),
replace = TRUE)
}
newdata <- rbind(newdata, dat[sel, ])
}
}
} else {
if (C.perc == "balance") {
li[[3]] <- round(sum(li[[2]])/length(li[[2]]), 0) - li[[2]]
} else if (C.perc == "extreme") {
med <- sum(li[[2]])/length(li[[2]])
li[[3]] <- round(med^2/li[[2]] * sum(li[[2]])/sum(med^2/li[[2]]),
0) - li[[2]]
} else {
stop("Please provide a list with classes to under/over-sample
or alternatively provide 'balance' or 'extreme'.")
}
und <-which(li[[3]] < 0) # classes to under-sample
ove <- which(li[[3]] > 0) #classes to over-sample
same <- which(li[[3]] == 0) # unchanged classes
# include examples from classes unchanged
newdata <- dat[which(dat[, tgt] %in% li[[1]][same]), ]
if (length(und)) { #perform under-sampling
for (i in 1:length(und)) {
Exs <- which(dat[, tgt] == li[[1]][und[i]])
sel <- sample(Exs,
as.integer(li[[2]][und[i]] + li[[3]][und[i]]),
replace = FALSE)
newdata <- rbind(newdata, dat[sel, ])
}
}
if (length(ove)) { #perform over-sampling
for (i in 1:length(ove)) {
Exs <- which(dat[, tgt] == li[[1]][ove[i]])
if (length(Exs) == 1) {
sel <- rep(Exs, as.integer(li[[2]][ove[i]] + li[[3]][ove[i]]))
} else {
sel <- sample(Exs,
as.integer(li[[2]][ove[i]] + li[[3]][ove[i]]),
replace = TRUE)
}
newdata <- rbind(newdata, dat[sel, ])
}
}
}
newdata
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.