dmultinorm | R Documentation |
Density for the multivariate Normal distribution
dmultinorm(vec.x, vec.mean = c(0, 0),
mat.cov = c(1, 1, 0),
log = FALSE)
vec.x |
For the |
vec.mean |
The vector of means. |
mat.cov |
The vector of variances and covariances, arranged in that order. See below for further details. |
log |
Logical. If |
This implementation of the multivariate (say
R
–dimensional) Normal density
handles the variances and covariances, instead of
correlation parameters.
For more than one observation, arrange all entries in matrices accordingly.
For each observation, mat.cov
is a vector of
length R \times (R + 1) / 2
,
where the first R
entries are the variances
\sigma^2{i}
, i = 1, \ldots, R
, and
then the covariances arranged as per rows, that is,
cov_{ij}
i = 1, \ldots, R,
j = i + 1, \ldots, R
.
By default, it returns the density of two independent standard Normal distributions.
The density of the multivariate Normal distribution.
For observations whose covariance matrix is not positive definite,
NaN
will be returned.
Victor Miranda
binormal
.
###
### Two - dimensional Normal density.
###
set.seed(180228)
nn <- 25
mean1 <- 1; mean2 <- 1.5; mean3 = 2
var1 <- exp(1.5); var2 <- exp(-1.5); var3 <- exp(1); cov12 = 0.75
dmvndata <- rbinorm(nn, mean1 = 1, mean2 = 1.5, var1 = var1, var2 = var2,
cov12 = cov12)
## Using dbinorm() from VGAM.
d2norm.data <- dbinorm(x1 = dmvndata[, 1], x2 = dmvndata[, 2],
mean1 = mean1, mean2 = mean2, var1 = var1, var2 = var2,
cov12 = cov12)
## Using dmultinorm().
d2norm.data2 <- dmultinorm(vec.x = dmvndata, vec.mean = c(mean1, mean2),
mat.cov = c(var1, var2, cov12))
summary(d2norm.data)
summary(d2norm.data2)
##
## 3--dimensional Normal.
##
dmvndata <- cbind(dmvndata, rnorm(nn, mean3, sqrt(var3)))
d2norm.data3 <- dmultinorm(dmvndata, vec.mean = c(mean1, mean2, mean3),
mat.cov = c(var1, var2, var3, cov12, 0, 0))
hist(d2norm.data3)
summary(d2norm.data3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.