| vimpute | R Documentation |
Impute missing values with prefered Model, sequentially, with hyperparametertuning and with PMM (if wanted) Need of 'helper_vimpute' script
vimpute(
data,
considered_variables = names(data),
method = setNames(as.list(rep("ranger", length(considered_variables))),
considered_variables),
pmm = setNames(as.list(rep(TRUE, length(considered_variables))), considered_variables),
formula = FALSE,
sequential = TRUE,
nseq = 10,
eps = 0.005,
imp_var = TRUE,
pred_history = FALSE,
tune = FALSE,
verbose = FALSE
)
data |
|
considered_variables |
|
method |
|
pmm |
|
formula |
|
sequential |
|
nseq |
|
eps |
|
imp_var |
|
pred_history |
|
tune |
|
verbose |
|
imputed data set or c(imputed data set, prediction history)
Other imputation methods:
hotdeck(),
impPCA(),
irmi(),
kNN(),
matchImpute(),
medianSamp(),
rangerImpute(),
regressionImp(),
sampleCat(),
xgboostImpute()
## Not run:
x <- vimpute(data = sleep, sequential = FALSE)
y <- vimpute(data = sleep, sequential = TRUE, nseq = 3)
z <- vimpute(data = sleep, considered_variables =
c("Sleep", "Dream", "Span", "BodyWgt"), sequential = FALSE)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.